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Quantum state engineering of light using intensity measurements and postselection
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Quantum state engineering of light is of great interest for quantum technologies, particularly for generating
nonclassical states of light, and is often studied through conditioning approaches. Recently, we demonstrated
that state engineering approaches can be applied in intense laser-atom interactions to obtain measurement
statistics which resemble optical “cat” states by using intensity measurements and classical postselection of
the measurement data. Postprocessing of a finite-size sampled data set allows one to select specific events, here
the processes that are energy conserving, corresponding to measurement statistics of nonclassical states of light.
However, to fully realize the potential of this method for quantum state engineering, it is crucial to thoroughly
investigate the role of the involved measurements and the finite-size nature of the postselection scheme. We
illustrate this by analyzing the postselection approach recently developed for high harmonic generation, which
enables the generation of optical cat states bright enough to induce nonlinear phenomena. These findings provide
significant guidance for quantum light engineering and the generation of intense optical cat states with potential
applications in nonlinear optics and quantum science.
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I. INTRODUCTION

The last five years witnessed a renewed interest in the
intersection of quantum optics and strong-field physics [1–3].
Historically, this interest can be traced back to the 1990s
[4–7], when most studies focused on providing more com-
plete quantum electrodynamic descriptions of strong-field
processes [8–11] or describing novel mechanisms responsible
for these observations [12–14]. However, the recent growth
in investigation has been driven by a different question:
the quantum properties of the driving field or the harmonic
field modes after the process of high harmonic generation
(HHG), a highly nonlinear process in which the photons of
an intense infrared (IR) driving field are up-converted into
radiation spanning from the near-infrared to the extreme ul-
traviolet (XUV) regime [15–17]. This renewed attention has
particularly focused on generating nonclassical states of light
with unprecedented intensity and frequency regimes [18–29].
Additionally, the use of nonclassical states of light to drive
strong-field processes can influence the electron dynamics
[30,31], alter the HHG spectrum [32], and leave their finger-
prints on the state of the light after the interaction [25,33–35].

*Contact author: javier.rivera@icfo.eu
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It was first demonstrated in Ref. [36] that the process of
HHG in atomic systems distinctly alters the photon statistics
of the driving field after the interaction. This theoretical in-
sight was later experimentally verified in Ref. [37] for atomic
systems and extended to semiconductor materials in Ref. [38].
These pioneering experimental studies introduced the idea
of postselection on HHG events by measuring the IR field
after the interaction alongside with the generated harmon-
ics [36–38]. These postselection schemes were instrumental
for the first observation of nonclassical signatures in the IR
field after the HHG process, characterized by small negative
regions in their Wigner function representation [18], which
were subsequently enhanced in Ref. [19]. Interestingly, in
the absence of postselection protocols, the IR state remained
a classical Gaussian state, highlighting the essential role of
postselection in leveraging strong-field physics for engineer-
ing nonclassical states of light [22].

Despite the experimental progress, theoretical explanations
are so far based on a phenomenological approach. Although
the nontrivial Wigner function of the experiment was observed
in the measurement statistics, and the theoretical model is in
good agreement with the recorded data, further explanation
of the postselection approach is crucial. This includes
highlighting the key ingredients of the postselection scheme:
how energy conservation is handled in the post processing
of the data, and how the relationship between the measured
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photocurrent and energy is maintained. Understanding the
role of the shot-to-shot field fluctuations is essential to use the
full potential of this scheme for quantum state engineering of
light using HHG.

This work addresses the fundamental question of the role
of fine-size sampling in strong-field postselection experi-
ments. In order to address this question we investigate the
case study of generating massive quantum states of light using
postselection methods in HHG. In this paper we take into
account the full experimental technicalities, and demonstrate
a comprehensive theoretical description of engineering high-
quality bright quantum light states using intense laser sources
and postselection approaches after HHG. We examine how the
role of energy conservation in the HHG process is properly
taken into account in the postselection, and study its influence
on the nonclassical features of the Wigner function (cf. [39]).
We compare these findings with the predictions of previous
theoretical approaches and experimental results. Through nu-
merical sampling, we also study the influence of the finite
nature of quantum tomography methods used in experimental
reconstructions of Wigner functions [18,19], and determine its
effects on the observed nonclassical features. With these, we
provide a more elaborate comparison with the experimental
results from Refs. [18,19]. We adopt a didactic approach to-
wards the problem of quantum state tomography with limited
data from the numerical, or experimental, sampling, particu-
larly addressing the strong-field community. Thus, this work
presents a detailed theoretical work-in-progress story for post-
selection schemes in high harmonic generation experiments.
We provide a clear picture of what the method does and does
not demonstrate. We discuss in detail the key steps to create
nonclassical light depicting nontrivial Wigner functions. This
will ultimately help to enhance the fidelity of the practical
measurements and assess the potential for additional applica-
tions of this method. Furthermore, going beyond the process
of HHG, the presented scheme applies to all parametric light
generation processes in which energy conservation holds.

We emphasize that the present paper does not aim to pro-
vide a rigorous theory for the nonlinear interaction leading
to the generation of high harmonics. The aim is to provide a
numerical sampling experiment based on postselection tech-
niques from the generated data set using energy conservation.
This is in tight connection with the experiment, as every real
quantum experiment is a sampling experiment.

The remaining paper is organized in the following way. In
Sec. II, we describe the postselection protocol in detail, and
the conditions under which it leads to the creation of non-
classical states of light depicting nontrivial Wigner functions.
This is followed by Sec. III, where the previously introduced
scheme is compared to analytical optical cat states and the ex-
perimental generation of nontrivial Wigner functions obtained
in Refs. [18,19]. For the didactic purpose of the paper we
include a discussion on imperfections and errors in Sec. IV.
We conclude the paper with Sec. V.

II. POSTSELECTION PROCESS FOR CREATING
NONCLASSICAL LIGHT STATES IN HHG

In this section, we first introduce the platform of quantum
optical HHG in Sec. II A, and subsequently introduce the

specific measurements performed in the experiment in
Sec. II B. This is followed by analyzing different postselection
schemes in Secs. II C and II D.

A. Stating the problem using laser driven HHG

Recent advances in the quantum optical formulation of
the process of HHG have indicated that coherent state driv-
ing fields are mapped to coherent output states due to the
charge current induced by the strong laser field [3,18]. This
assumption holds when dipole moment correlations of the
driven electron can be neglected [21] and when ground state
depletion can be ignored [29]. Typically this is given in HHG
experiments using gas targets and moderate driving laser in-
tensities, while for HHG in solid state systems [40], quantum
correlated atomic systems [24], or for higher driving inten-
sities [29] deviations from the coherent state mapping are
observed. We note that the assumption that coherent states
map to coherent states is also used when considering non-
classical driving fields, such as bright squeezed vacuum, in
which the field is decomposed into coherent states [32] such
that each contribution is considered independently. In the fol-
lowing we will set the stage for the postselection experiment
using the HHG process and highlight its applicability with
the product coherent state structure of the final field state
after HHG.

In more detail, we consider a laser source providing coher-
ent radiation described by |√2α〉, where a 50:50 beam splitter
(BS) separates the beam into a mode driving the process of
HHG and a reference local-oscillator (LO) mode with vari-
able phase φ for quantum state tomography (see Fig. 1 for a
sketch of the experiment). Hence, the field interacting with
the atomic HHG medium for the generation of high-order
harmonics is described by the coherent state |α〉 while the
harmonic field modes are initially in the vacuum

⊗
q |0q〉. The

nonlinear electron dynamics induced by the intense driving
field leads to an electron charge current such that the outgo-
ing field after HHG is described by (a detailed microscopic
derivation can be found in [22])

|α + δα〉
⊗

q

|χq〉, (1)

where the fundamental mode experienced a shift δα tak-
ing into account the depletion of the driving field, and the
harmonic fields modes are given by coherent states with am-
plitude χq. We find that the final field state after the HHG
process is in a product state, implying that measurements
on one mode do not affect the other field modes. However,
there is a crucial detail missing in this description: the fact
that the depletion of the fundamental driving field depends on
the harmonic amplitudes, i.e., δα = δα(χq), which makes the
state of the IR driving field be correlated with the harmonic
XUV modes. Furthermore, since HHG is a parametric process
in which the electron after the interaction returns to the initial
state, the entire energy transfer is solely between the different
field modes. It is now a matter of isolating the process of
HHG from unwanted secondary effects such as excitation or
ionization.
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FIG. 1. Schematic representation of the experimental setup in-
cluding all relevant field modes. A laser source delivers radiation
represented by the coherent state |√2α〉, which is separated at a
beam splitter (BS). The lower arm is used as a local oscillator (LO)
with variable phase φ, while the upper arm induces the nonlinear
process of HHG. There, the input field |α〉 is depleted, leading to the
state |α + δα〉, while the input vacuum of the harmonics results in
a coherent state |χq〉. The harmonic modes are measured, as well as
the reflected part of the IR field after HHG, leading to projections
on |mq〉〈mq| and |nr〉〈nr |, respectively. These two measurements are
used to generate the shot-by-shot correlation map as indicated in
Fig. 2. The transmitted mode of the IR after the HHG passes to a
homodyne measurement configuration where it overlaps with the LO
|αeφ〉 to reconstruct the quantum state of the IR field. The final BS
in the LO arm is used to stabilize the intensity of the driving field,
eliminating intensity fluctuations by postselection of those laser shots
such that the standard deviation of the photon number σn ≡ √

�n
is in the range of σn/〈n〉 ≈ 0.5% and therefore minimizes classical
intensity fluctuations associated with the shot-to-shot instabilities of
the laser system. Further, there are two neutral density filters (NDFs)
placed in both IR arms such that the photon number is reduced
to be compatible with the photodiodes. Note that the NDF does
not significantly alter the photon number fluctuations, which remain
around σn/〈n〉 ≈ 1.5% after the NDF.

B. Measurements in the postselection experiment

In the previous section we introduced the experimental
setup, while in this section we discuss the postselection (PS)
scheme in more detail. After the process of HHG the IR
driving field is given by the shifted coherent state |α + δα〉
and the harmonics are in a coherent state |χq〉. The IR field
passes through a 50:50 BS such that the state is separated into
transmitted (t) and reflected (r) modes,

|(α + δα)/
√

2〉t ⊗ |(α + δα)/
√

2〉r ⊗ |{χq}〉, (2)

where |{χq}〉 ≡ ⊗
q |χq〉 is a shorthand notation for all har-

monic field modes. Then, measurements on the reflected mode
and the XUV modes are performed. These measurements
are done through photodetectors measuring a photocurrent.
The photocurrents are proportional to the field intensity, i.e.,
the photon number of each mode, such that in each shot (i) we
have measured

Ô(nr, {mq}) = |nr (i)〉〈nr (i)|
⊗

q

|mq(i)〉〈mq(i)|, (3)

where {mq} is the collection of all photon numbers mq of
the harmonics. The total operation on all three field modes
is therefore

1t ⊗ Ô(nr, {mq}), (4)

where 1t = ∑
nt

|nt 〉〈nt | is the identity on the transmitted
mode. The measured signal of the reflected IR mode and

FIG. 2. Correlation map of the measured IR vs XUV shot-by-
shot intensity distribution. (a) Zoom into the experimental setup
indicating the reflected IR mode and the measured XUV mode.
(b) Pictorial correlation map of the shot-by-shot XUV and IR in-
tensity. Since the experiment is measuring the photocurrent, the
measured signal is proportional to the photon number. We thus show
IXUV = |χq|2 and IIR = |α + δα|2. Thus, the anticorrelation diagonal
(in red) corresponds to the photon number conserving events, while
the diagonal (in purple) to the energy conserving events from Eq. (6)
when considering the 13th harmonic order. The latter conditions the
field state on the HHG process. In this correlation map, we set α =
25, δα = −15, and χq = |δα|/√q. The y axis has been normalized
to the mean value of the IIR distribution, i.e., multiplying the y axes
by ĪIR/ĪXUV, as per Ref. [37].

the XUV modes are fluctuating from shot to shot and the
measured intensities can be correlated, as shown in Fig. 2(b)
in which the XUV intensity is shown for the IR intensity
measured in each shot. This is due to the sampling of photon
number states from the coherent state distribution in both field
modes. We emphasize that the correlation map in Fig. 2(b)
is different from those observed experimentally [18,19]. The
correlation map shown here has already excluded effects such
as ionization or excitation of the electron when solving for the
final field state, by restricting to those cases where it returns
to the original ground state. These effects, however, are of
course present in the experiment. Therefore, the statistics
shown in Fig. 2(b) originate from the intrinsic photon number
fluctuations of a coherent state, whereas in the experiment all
processes are present. We thus expect that the experimental
fluctuations leading to the distribution are larger than the
intrinsic fluctuations of a coherent state.

However, we are interested in conditioning the outgoing
quantum state of the IR field on the process of high harmonic
generation. Due to energy conservation we know that the IR
driving field is depleted during the HHG interaction such that
an increased harmonic intensity is correlated with a decreased
IR intensity after the interaction [37,39]. This is due to the
parametric nature of the HHG process in which the electron
returns to its initial state after the interaction. Consequently,
no energy is stored in the matter system, and it is only respon-
sible for mediating the energy between the field modes. We
note that during the light-matter interaction the electron can
be excited from the ground state to another bound state or the
continuum, and it is thus an experimental task to remove these
unwanted events.

We are now interested in relating the measured photon
numbers to the energy conserving events of HHG by means
of postselection techniques.
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C. Postselection according to energy conservation

Based on the measurement in Eq. (3) we consider the
postselection (PS) case, in which the photons lost in the IR
driving field are correlated to the harmonic photons such that
energy is conserved [39]. The condition of shot-to-shot energy
conservation for the photons in the field is given by

nt (i) + nr (i) +
∑

q

qmq(i) = n0, (5)

where nt , nr , and mq are the photon numbers in the transmit-
ted, reflected, and XUV modes, respectively, and n0 = |α|2 is
the initial state boundary condition before the HHG interac-
tion. Note that this expression is given in units of the driving
laser frequency ω. In the energy conservation relation we have
separated the IR field into reflected and transmitted modes,
due to the 50:50 BS2 (see Fig. 1), such that the relation with
the XUV modes involves both parts of the IR field. Since
the IR photon number is not changed by BS2 the energy
conservation still holds, even though only the reflected mode
is measured.

In other words, Eq. (5) implies that, for the collection
of generated harmonic photons mq, the number of photons
absorbed from the IR field is

∑
q qmq = �nIR. This essen-

tially allows one to postselect on those events in which �nIR

number of IR photons are removed from the initial driving
field. Consequently, in order to take into account the energy
conservation in the PS scheme, the condition of the IR photons
in the transmitted mode for each shot is given by

nt (i) = n0 − �nIR(i) − nr (i). (6)

This ensures that the energy conservation is properly ac-
counted for, while measuring the photon number nr and mq in
the reflected and XUV modes, respectively. Therefore, when
postselection is performed on the energy conserving events in
Eq. (6), we introduce the postselection operation

ÔPS =
∑

nr+�nIR=n0/2

δPS |nt (i)〉〈nt (i)| ⊗ Ô(nr, {mq}). (7)

The sum goes over the energy conserving diagonal in
which nr + �nIR = n0/2, and δPS = δnt ,n0/2 ensures that the
energy conservation is considered over all modes. Due to the
energy conservation based on exact photon numbers, we find
that the PS operator in (7) is diagonal in the Fock basis,
i.e., resulting in a Fock state of the transmitted mode. This
is intuitive for the exact energy conservation case, since a
given number of photons in the reflected IR mode and the
harmonic mode result in a well defined photon number for
the transmitted mode. The crucial argument of total energy
conservation between all field modes provides the insights to
generate nonclassical field states in the sampled measurement
data, and is motivated from the fact that the displacement of
the driving field δα({χq}) is a function of the harmonic ampli-
tudes {χq}. The number of photons generated in the harmonic
modes corresponds to the number of photons subtracted from
the initial driving field, and counting the harmonic photons
allows one to infer the number of subtracted photons [39].

However, we note that, strictly speaking, energy conserva-
tion is not given based on exact photon number counts because
the initial coherent state of the light field is not an eigenstate of

FIG. 3. The postselected state (a) when considering exact energy
conservation in Eq. (6) and (b) when considering the fuzzy version in
Eq. (8). The parameters have been set to α = 1.2, δα = −0.3, q1 =
13, and q2 = 15. The x and p axes represent the optical quadratures,
with x ≡ 〈x̂〉 = 〈â + â†〉/√2 and p ≡ 〈 p̂〉 = 〈â − â†〉/(i

√
2).

the free-field Hamiltonian, and therefore does not have a van-
ishing dispersion in energy or photon number. But energy is,
of course, conserved on the level of the Hamiltonian operator.
Therefore, and instead of considering strict conservation of
energy on the basis of photon numbers, we take into account
the fluctuations of the photon numbers of the field modes and
replace

δPS → exp

[
− (nt − n0 + �nIR + nr )2

2σ 2

]
, (8)

where we set σ 2 ≈ n0/2, though the effect of varying values
of σ 2 is considered more deeply in Sec. II D. This is in fact
an adaptation of the absence of knowledge about the precise
underlying photon number of the driving field, and therefore
the energy conserving subspace of the interaction is not well
defined [39].

Given the description of the PS scheme and operators, we
shall now look at the state of the transmitted mode given by

ρ̂t = Trr,q[ÔPS ρ̂ Ô†
PS], (9)

where the state on which this PS is performed is given by
ρ̂ = |
〉〈
|, where |
〉 is the state in Eq. (2) after the HHG
interaction and BS2. Numerical evaluation of the PS operation
in Eq. (9) is displayed in Fig. 3, where the Wigner function
of the light field in the transmitted mode is shown. Due to
the numerical implementation we restrict the analysis to two
harmonic modes, q1,2 = 13, 15, and sample the data points
with the PS constraint from Eq. (7). We find that the associated
Wigner function in Fig. 3 displays clear negativities when the
strict energy conservation based on the exact photon numbers
in Eq. (6) is considered. Even the fuzzy version of the energy
conservation in Eq. (8) shows the same negativities and only
the symmetry of the Wigner function gets slightly distorted.

The Wigner functions of the single-mode transmitted field
shown in this section are obtained by direct computation of the
Wigner function from the state in Eq. (9). The PS constraint is
included in the numerical evaluation by expressing the states
in the Fock basis and only considering those elements which
satisfy the PS condition.
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FIG. 4. Wigner functions obtained by considering different diag-
onals (determined through the value of κ) when postselecting on the
transmitted modes. Here we have set α = 3.0 and δα = −1.0. In the
first row we set q = 3, in the second q = 5, in the third q = 13, and
in the fifth q = 15. The purity of the postselected state, γ = tr(ρ̂2

t ),
is shown in each of the panels.

D. Postselection without energy conservation

1. Using a single harmonic mode

In Eq. (6), we considered a postselection on the photon
number of the reflected mode satisfying an energy conser-
vation relation. However, the presented postselection scheme
allows for evaluating different diagonals, which do not neces-
sarily need to satisfy the energy conservation relation. Here,
we evaluate the impact of choosing different diagonals on the
characteristics of the postselected state through its influence
on the resulting Wigner function. For simplicity, throughout
this section we restrict the analysis to a single-mode scenario,
rewriting Eq. (6) as

nr (i) + κ mq(i) = c, (10)

where κ is treated as a tunable parameter, while the value
of c remains as detailed in Eq. (6). It is worth noting that
κ = 1 corresponds to the scenario where PS is performed on
the anticorrelation diagonal of the intensity distribution cor-
responding to conservation of photon number and not energy.
While κ = q corresponds to the desired energy conservation
as in Eq. (6). The nature of the PS scheme allows one to pro-
cess the data postmeasurement such that different diagonals
can be chosen.

The results from this analysis are shown in Fig. 4. From
top to bottom, we set q = 3, q = 5, q = 13, and q = 15. In
all cases, we set α = 3.0 and δα = −1.0. Each row displays
different values of κ , increasing from left to right, as indicated
at the top of each panel. For the two lowest harmonic orders,
we observe that the value of κ greatly influences the features
of the Wigner function. While the Wigner function exhibits a
non-Gaussian behavior, the negative regions are absent when
κ = 1 [panels (a) and (d)] and become more pronounced as
κ increases [panels (b), (c), and (f)], reaching a minimum

FIG. 5. Wigner functions obtained by considering different diag-
onals when postselecting on the transmitted modes. Here, we have set
α = 9.0 and δα = −3.0, while keeping q = 15. Each row considers
a different value of σ , i.e., the width of the considered diagonal. The
purity of the postselected state, γ = tr(ρ̂2

t ), is shown in each of the
panels.

value of W (x∗, p∗) = −0.018. Furthermore, for this harmonic
order, the purity of the postselected state, evaluated as γ =
tr(ρ̂2

t ) and explicitly shown in each subplot, increases as the
Wigner function decreases. These two behaviors align with
Hudson’s theorem [41], which states that pure states have non-
negative Wigner functions if and only if they are Gaussian.
Conversely, for the two highest harmonic orders shown in the
second row, the features of the Wigner function and the purity
of the postselected state are more resilient to the specific
value of κ . This resilience stems from the energy conservation
postulate introduced in Eq. (6), which determines the values
of nt that significantly contribute to the PS operator. Thus, as
the harmonic order q increases, the support of ÔPS diminishes,
thereby reducing the influence of κ .

However, when considering high-harmonic orders, it is
possible to increase the support of ÔPS on the state by consid-
ering larger values of α. In Fig. 5, we examine the case where
α = 9.0 and δα = −3.0, triple the values used in Fig. 4, while
fixing the harmonic order at q = 15. Each column in this
figure displays different diagonal configurations. Similarly
to the results obtained in the low harmonic order regime in
Fig. 4, we observe that the Wigner negativities and the purity
of the state increase as κ changes from 1 to q. Unlike Fig. 4,
however, each row considers a different value of σ , i.e., the
width of the diagonal. This parameter also plays an important
role in determining both the purity and the presence of Wigner
negativities. Specifically, for the latter, the greater the width
of the diagonal, the less pronounced the Wigner negativities
become. This is consistent with the fact that increasing σ

enlarges the support of ÔPS on the state, such that in the limit
σ → ∞ the postselection operator approaches the identity,
leading to Gaussian Wigner functions.

2. Using multiple harmonic modes

While the previous subsection focused on the analysis of
individual modes, we can generalize Eq. (10) to include an
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FIG. 6. Wigner functions obtained by considering different di-
agonals (determined through the values of κ1 and κ2) when
postselecting on the transmitted modes. Here, we have set α = 3.0
and δα = −1.0. In the first row we set (q1 = 3, q2 = 5), while in the
second row (q1 = 13, q2 = 15). The purity of the postselected state,
γ = tr(ρ̂2

t ), is shown in each of the panels.

arbitrary number of harmonic modes. Specifically, we can
express it as

nr (i) +
∑

q

κqmq(i) = c, (11)

which allows for a greater degree of tunability when selecting
the correlated photon numbers.

In Fig. 6, we present the results obtained when selecting a
pair of harmonic modes (q1, q2), with the diagonals fixed to
κ1 = κ2 = 1 for the first column while κ1 = q1 and κ2 = q2

for the second one. The observed trend closely resembles that
seen in Fig. 4, interestingly showing squeezing-like features
though with non-Gaussian characteristics for the cases where
γ = 1.00, revealed through the presence of Wigner negativ-
ities. For the lowest harmonic order pair with κ1 = κ2 = 1
[panel (a)], the resulting Wigner function lacks from negative
regions but still exhibits a non-Gaussian behavior, with the
postselected state showing a purity below 1. When κ1 and
κ2 are increased to respectively match the corresponding har-
monic orders, nonclassical features on the obtained Wigner
functions become more prominent, and the purity approaches
1 [panel (b)]. Conversely, for the highest harmonic orders, the
resulting features become independent of the values of κ1 and
κ2 [panels (c) and (d)], with purities equal to 1 and Wigner
functions exhibiting negative regions.

III. COMPARISON WITH OPTICAL CAT STATES

The theoretical models describing the postselection-on-
HHG experiment that have been used thus far were suc-
cessful in reproducing the experimental observations [18–22],
even though they rely on phenomenological approaches. In
essence, the key idea of these models is to project the state
of the driving field onto the subspace that has been altered
by the HHG process. Finding this subspace was the delicate
task of the previous approaches. While the first experimental

realization of postselection on HHG [18] was described using
operators projecting the state |α + δα〉 on the subspace “or-
thogonal” to the initial state, i.e., 
HHG = 1 − |α〉〈α|. Note
that the projector 
HHG is not orthogonal to the initial state
|α〉 due to the overcompleteness of the coherent state basis.
The resulting state |α + δα〉 → |ψ〉 = (1 − |α〉〈α|)|α + δα〉
showed good agreement with the experimental data obtained
from the HHG conditioning experiment. Further advancing
this description, in Refs. [20,21] the correlations between
the coherent state amplitudes δα = δα({χq}) were introduced
via a set of wave packet modes corresponding to joint HHG
excitations of all modes. Using the formalism of the quantum
theory of measurement, the positive operator valued mea-
sure (POVM) for the HHG process was rigorously introduced
[20,21], and resulted in the same projector 
HHG in the limit
of many harmonic modes participating in the process. All
these approaches leading to the same projector result in a
superposition between two coherent states, explicitly given by

|ψ〉 = |α + δα〉 − 〈0|δα〉|α〉. (12)

In this section, we undertake a theoretical comparison
between the state defined above and the postselected state
introduced in Eq. (9) through numerical sampling. Follow-
ing this comparison, we simulate experimental outcomes by
performing numerical statistical sampling, which mimics the
experimental shots carried out in homodyne detection ex-
periments under ideal conditions. Finally, we compare these
simulated results with the experimental data reported in
Ref. [19].

To estimate how well the conditioning approach in Eq. (12)
compares to the postselected state in Eq. (9), we use the
fidelity F as our figure of merit. Specifically, we denote
|ψ (β, δβ )〉 = (1/N )(|β + δβ〉 − ξ |β〉, with ξ = 〈0|δβ〉, and
write the fidelity as F (β, δβ ) ≡ 〈ψ (β, δβ )|ρ̂t |ψ (β, δβ )〉. We
then compare both states by considering the following opti-
mization problem:

F (β∗, δβ∗) = max
β,δβ

F (β, δβ ), (13)

which we solve using brute force search approaches by defin-
ing a grid of size 100 × 100, with elements within the range
β, δβ ∈ [10−3, 3]. It is worth noting that, in this optimization,
we consider δβ > 0 and allow regimes where δβ � β to prop-
erly align the orientation of the Wigner functions obtained by
Eq. (9) with those resulting from models based on the form of
Eq. (12).

The results of this optimization are shown in Fig. 7 for
different values of α and δα (see caption). In particular, the
first row presents the Wigner function of Eq. (9) for the con-
sidered parameters, while the second row displays the same
phase-space distribution for the optimal state |ψ (β∗, δβ∗)〉.
For the three cases considered here, the optimal values of
the fidelity are 97.59%, 64.97% and 86.16%, from left to
right, respectively. This indicates that the theoretical model
proposed in Ref. [18] performs particularly well in the very
low photon number regime, as is the case of panels (a) and (d).
For intermediate low photon numbers, corresponding to those
of panels (b) and (d), the fidelity gets reduced mainly due
to an overestimation of the quantum superposition presented
by Eq. (12), leading to larger negative regions in the Wigner
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FIG. 7. Comparison of the postselected state in Eq. (9) with
that in Eq. (12) by means of fidelity optimizations. The first row
shows the postselected state for different values of (α, δα), in par-
ticular (a) (1.2,−0.3), (b) (2.0,−0.7), and (c) (3.0, −1.0, ). The
second row shows the optimal state |ψ (β∗, δβ∗)〉, with parame-
ters (β, δβ ) given by (10−3, 0.455) in (d), (10−3, 0.91) in (e), and
(0.1,1.70) in (f).

function. As the mean photon number of the postselected state
increases, the fidelity also increases, as illustrated in panels
(e)–(f), though not as much as in panels (a)–(d), resulting in
reasonably high fidelity values.

IV. FINITE-SIZE SAMPLING EXPERIMENTS
AND THEIR LIMITATIONS

In this section we provide a detailed tour of the to-
mographic reconstruction of quantum states of light. We
consider a homodyne configuration which allows one to re-
construct the Wigner function of the measured field. Since the
postselection-on-HHG experiment is a sampling experiment,
we consider the intrinsic shot-by-shot nature of every realistic
measurement as well as the limitations of the reconstruction
method. Furthermore, we analyze fluctuations in the driving
field.

So far the Wigner functions herein are obtained by directly
using the quantum state of the field mode under investigation.
Now, in order to study experimental imperfections, we
perform a numerical quantum sampling experiment [42,43].
This allows us to take into account the finite nature of every
sampling experiment, in order to understand the limitations of
the postselection protocol. While finite-size sampling plays
a crucial role in all (quantum) experiments, it has also been
studied in, e.g., quantum metrology [44], state discrimination
[45], efficient quantum measurement [46], and quantum
cryptography [47].

A. Comparison with existing experimental data

Experimental reconstructions of the Wigner function rely
on homodyne detection measurements [48] in which the
optical state we want to characterize is combined with a
well-characterized coherent state with a controllable phase,
typically referred to as the local oscillator (LO), using a 50:50
beam splitter, as shown at the right of Fig. 1. The intensities of
the two output modes of the beam splitter are then measured
and subtracted, leaving us with

�I = Iin − ILO ∝ 〈Êin(t )ÊLO(t )〉, (14)

with Ê (t ) ≡ âe−iωt + â†eiωt the electric field operator. Given
that the state of the local oscillator is ||α|eiφ〉, and after inte-
grating over a given number of optical cycles, we can rewrite
(14) as

�I ∝ 〈âineiφ + â†
ine−iφ〉 ≡ 〈x̂in(φ)〉, (15)

that is, we obtain the average value of photonic quadratures
along the direction determined by φ. In experimental recon-
structions, this quantity is approximated by

〈x̂in(φ)〉 ∼= 1

Nshots

Nshots∑
i=1

x(i)
in (φ), (16)

where x(i)
in (φ) correspond to single shot measurements of the

quadrature x̂in(φ), and Nshots represents the total number of
shots for a specific value of φ.

A potential way to reconstruct the Wigner function from
homodyne measurements is by means of the inverse Radon
transformation [49,50]

Wexp(x, p) ∼= 1

2π2Nφ

Nφ∑
m=1

K (zm), (17)

with zm ≡ x cos(φm) + p sin(φm) − 〈x̂in(φm)〉, Nφ the total
number of angles considered, and K (zm) the so-called integra-
tion kernel, given by K (z) = 1

2

∫ ∞
−∞ dξ |ξ | exp[iξz]. However,

one of the main problems with this kernel function is that
it is infinite at z = 0. Consequently, in numerical implemen-
tations, the integration limits are substituted by finite ones,
±kc, with kc chosen to reduce numerical artifacts related to
the reconstruction while maintaining the features displayed
by the Wigner function [50]. More specifically, in the re-
construction performed in Ref. [18] it was observed that
kc ∼ 4 was a good enough value to reduce the numerical
artifacts while maintaining a well-resolved Wigner function.
In our case, we instead find that kc = 2 provides us with
better Wigner function reconstructions, as will be discussed
in Sec. IV.

To do a proper comparison between the experimental and
theoretical data, we consider a statistical sampling from the
probability distribution P(x) resulting from measuring x̂in(φ)
in the postselected state given in (9) (see the Appendix
for details). This allows us to obtain a set of Nshots × Nφ

pairs (φ(i)
m , x(i)

in (φ(i)
m )), with the outcomes x(i)

in (φ(i)
m ) distributed

according to P(x), that simulate the outcomes of the exper-
iment in Fig. 1 under ideal conditions, i.e., in the absence
of any experimental sources of noise. Then, by means of
Eq. (17), we can reconstruct the Wigner function from the
outcomes (φ(i)

m , x(i)
in (φ(i)

m )). This numerical sampling of the
Wigner function provides us with a better tool to perform
fidelity estimations with respect to experimental data. Here,
we compare the results obtained from the numerical sampling
in the previous section with those obtained in Ref. [19] [see
Fig. 8(a)], where Wigner function negativities below the ar-
tifacts induced by the quantum tomography protocol were
observed. To achieve this, we first identify values of α and
δα that yield Wigner functions in good agreement with the
experimental ones. In our case, these values are α = 1.2 and
δα = −0.3.

013110-7



J. RIVERA-DEAN et al. PHYSICAL REVIEW A 112, 013110 (2025)

FIG. 8. Comparison between experimental data and the numer-
ical approach. In (a) we show the experimental Wigner function
obtained in Ref. [19], and in (b) the one obtained from the numerical
sampling when setting α = 1.2, δα = −0.3, Nshots = 100, Nφ = 20,
and kc = 2. The x and p axes of the experimental data were aligned to
ensure that the main features of both Wigner functions are captured
within the same phase space span.

Using this set of parameters, we followed the approach
depicted earlier to perform the numerical sampling, and
applied the inverse Radon transformation to recover a matrix
Wnum describing the numerical Wigner function presented
in Fig. 8(b). For this, we used a total number of shots
Nshots = 100, considered a total of Nφ = 20 angles, and set
kc = 2 (this choice is justified later on in Sec. IV). The
dimensions of this matrix were adjusted to match those of
the experimental data, denoted here as Wexp. Additionally,
the x and p axes of the experimental data were aligned to
ensure that the main features of both Wigner functions in
Fig. 8 are captured within the same phase space span. This
alignment is crucial as it depends on the parameters used
for the reconstruction, particularly kc, as will be discussed in
Sec. IV (see Fig. 9). By doing this, we observe in Fig. 8 the
same overall volcano-like shape for both the experimental
and numerical Wigner functions, with a minimum located at

FIG. 9. Reconstruction of the Wigner function from the numeri-
cal sampling for different values of kc. More specifically, we have set
(a) kc = 1, (b) kc = 2, (c) kc = 3, and (d) kc = 4. In all cases, we have
set Nshots = 100, Nφ = 20 uniformly spread from [0, π ], α = 1.2,
and δα = −0.3. The exact Wigner function for the corresponding
state is shown in Fig. 7(b).

the origin, whose depth varies depending on the nature of the
Wigner function, and with a maximum located on top of it.

Given that both Wexp and Wnum have different normal-
izations, we first normalize them to a consistent scale. To
do so, we define W̄num and W̄exp as W̄ = W/‖W‖F , where
‖W‖F denotes the Frobenius norm of matrix W, ‖W‖F =√∑

i

∑
j |Wi j |2. This normalization ensures that ‖W̄num‖F =

‖W̄exp‖F = 1. By normalizing this way, for any two real ma-
trices Ā and B̄, we have 〈Ā, B̄〉F � 1, where 〈·, ·〉F denotes
the Frobenius inner product between two matrices. This al-
lows us to compare the similarity between W̄num and W̄exp.
Following this approach, we obtain that 〈W̄num, W̄exp〉F =
0.8898, suggesting a fairly high degree of similarity between
the experimental data and that obtained through the numeri-
cal sampling. As mentioned earlier, the numerical sampling
considered here does not include any of the experimen-
tal nuances about the realistic postselection protocol, which
we expect to further increase the similarity between theory
and experiment, or can be seen as sources of noise in the
experiment.

Finally, for completeness, Tables I and II summarize a
comparison of the Wigner function features and fidelity es-
timates, respectively, including the experimental results of
Ref. [18,19]. The approach described in this section has been
followed, with additional details provided in the caption of
Table II.

B. Shot-to-shot measurement

Thus far, we can distinguish three main limitations that
could affect the experimental reconstruction of our Wigner
function: the number of shots performed per angle (Nshots), the
number of angles considered in the reconstruction (Nφ), and
the value of kc. Here, we present how these different values
affect, from a numerical perspective, the reconstruction of the
Wigner functions shown in Fig. 7. We begin by analyzing
the influence of kc on the reconstructed Wigner functions. To
do so, we fix Nshots = 100 and Nφ = 20, leading to a total
number of 2000 outcomes, and set α = 1.2 and δα = −0.3
such that the exact Wigner function corresponds to that in
Fig. 7(a), depicting two maxima: a small one to the left of
(x = 0, p = 0) and a prominent one around (x � 2, p = 0).
A minimum value is observed at (x = 0, p = 0). The results
from this analysis are presented in Fig. 9. In all cases, we
observe the presence of artifacts, i.e., extra negative (in blue)
and positive (in red) regions compared to those appearing in
the exact distribution. It is worth noting that, in some cases,
the observed negative regions are comparable in magnitude to
that of the central one at (x = 0, p = 0).

Given that the generated data lack additional experimental
noises, these extra artifacts stem directly from the reconstruc-
tion method, as K (z) involves the integral of an oscillatory
function, with the number of oscillations considered depend-
ing on the value of kc. In other words, a finite value of kc

introduces a low-pass filter that attenuates the high-frequency
components of our reconstruction. While increasing values of
kc allow for the extraction of finer details about the Wigner
function, they also introduce high-frequency artifacts. Hence,
one can observe a tradeoff on the values of kc: the smaller
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TABLE I. Summary of the minimum of the respective Wigner functions Wmin and the visibility of the quantum interference |Wmin/Wmax|
via the ratio of the Wigner minima and maxima for the different approaches to describe the postselection experiment in HHG. The same
parameters for the theoretical approaches as for maximizing the fidelity with the experimental data from Ref. [19], Fig. 7(b) are used when
finding the Wigner minima and interference visibility. For the theoretical models the values of the coherent state parameters are given in the
respective brackets [α, δα].

Expt. [18] Expt. [19], Fig. 7(b) Expt. [19], Fig. 8 |ψ〉 = |α + δα〉 − 〈0|δα〉|α〉 Sampling (this work)

Wmin −0.01 −0.04 0.02 −0.01 [α = 10−3, δα = 0.45] −0.03 [α = 1.2, δα = −0.3]
|Wmin/Wmax| 0.05 0.42 0.17 0.63 [α = 10−3, δα = 0.45] 0.55 [α = 1.2, δα = −0.3]

the values, the worse the reconstruction of the Wigner func-
tion is, as shown in Fig. 9(a); the higher the values, the
more resolved the Wigner function becomes at the expense
of acquiring more artifacts in the reconstruction, as shown in
Fig. 9(d). For the values of kc considered here, we observe
that kc = 2 best fits these tradeoff requirements, justifying
therefore its use in Fig. 8. However, to the best of our
knowledge, there is no established intuition for selecting this
cutoff value a priori, beyond a trial-and-error approach, and
benchmarked to a known distribution (most commonly a re-
construction of a Gaussian from a laser system providing a
coherent state).

Under the same conditions for the postselected state
as those chosen in Fig. 9, in Fig. 10 we instead examine
the influence of varying Nshots (first row) and of Nφ . More

FIG. 10. Reconstruction of the Wigner function from the numer-
ical sampling for different values of Nshot (first row) and Nφ (second
row). More specifically, in the first row Nφ = 20 while Nshots = 50
in (a), Nshots = 100 in (b), and Nshots = 500 in (c). Conversely, in the
second tow Nshots = 100 while Nφ = 10 in (d), Nφ = 20 in (e), and
Nφ = 50 in (f). In all plots, kc = 2, α = 1.2, and δα = −0.3.

specifically, in Figs. 10(a)–10(c), we fixed Nφ = 20 and
varied the value of Nshots (50, 100, and 500 respectively).
Alternatively, in Figs. 10(d)–10(f), we fixed Nshots = 100 and
varied the value of Nφ (10, 20, and 50 respectively). In all
panels, we have fixed kc = 2. As observed, an increase in
either of these sampling points provides enhanced resolution
of the measured Wigner functions. For instance, compared to
Fig. 7(a), the region located at the left of the origin becomes
better resolved. Nevertheless, this increase in the amount of
data does not reduce the presence of the artifacts mentioned
earlier, which instead require the use of more elaborate
reconstruction methods in order to be mitigated [50,51].

To summarize, in Secs. III and IV we evaluated the agree-
ment of the analytical expression of the optical “cat” state give
by Eq. (12) with the state reconstructed using the numerical
sampling approach and with existing experimental data. The
more important values are those from Table II, in which the
numerical sampling approach developed in this work is com-
pared to the experimental data from Refs. [18,19]. We do this
to be as close as possible to the experiment, via simulating
the finite nature of the shot-to-shot experiment, and analyzing
the influence of the finite statistics on the homodyne trace
and Wigner function via inverse Radon transformation. In
Table II the values of fidelity in comparison to the experimen-
tal data from Ref. [18] and those from Ref. [19] show F =
0.65 and F � 0.9, respectively. This difference is associated
with experimental imperfections and with the implementation
of the postselection technique, which has been improved in
Ref. [19] compared to Ref. [18]. This explains why the fidelity
is smaller for the cat state measured in Ref. [18] compared
to the cat states measured in Ref. [19]. In other words, we
conclude that the comparison shows that the analytical ex-
pression of the cat state shown in Eq. (12) captures the overall
features of the postselected state, and in particular provides a
good factual representation of the state.

TABLE II. Summary of the different approaches to describe the postselection experiment in HHG by providing the fidelity F between
the different cases. The fidelities between the experimental data and the two theoretical approaches, analytical and sampling, are maximized
by varying the theoretical parameters, which are given in each entry alongside the fidelity. Specifically, we search for parameters in Eq. (9)
that best reproduce the experimentally measured mean photon number and yield features similar to those of the observed Wigner function.
Following an optimization procedure similar to that in Fig. 7, we identify the optimal state of the form given in Eq. (12). Using these two
analytical states, we conduct numerical sampling as described in Sec. IV A and the Appendix, and perform a fidelity comparison similar to
that in Fig. 8.

|ψ〉 = |α + δα〉 − 〈0|δα〉|α〉 Numerical sampling (this work)

Expt. [18] F = 0.54, [α = 0.1, δα = 0.92] F = 0.65, [α = 1.8, δα = −0.5]
Expt. [19], Fig. 7(b) F = 0.89 [α = 10−3, δα = 0.45] F = 0.89 [α = 1.2, δα = −0.3]
Expt. [19], Fig. 8 F = 0.91 [α = 1.2, δα = 1.84] F = 0.93 [α = 5.0, δα = −1.6]
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FIG. 11. Wigner functions obtained when considering Eq. (18)
as the initial state of the driving field, for different values of σ̃ .
Specifically, in (a) σ̃ = 0.02, (b) σ̃ = 0.22, and (c) σ̃ = 0.33. Here,
we have fixed α0 = 2 and δα = −0.3.

C. Intensity fluctuations of the driving field

In addition to potential noise contributions from the
quantum tomography reconstruction and the experimental
specifications associated with the applied measurements, ad-
ditional sources of infidelity can arise from the employed laser
source. Here, we consider the impact of classical fluctuations
in the laser field amplitude. For a perfect coherent state driving
field |α〉 with amplitudes necessary to drive the HHG process
on the order of |α| ∼ 106, the average photon number is on the
order of 〈n〉 = |α|2 ∼ 1012. For the coherent state the variance
of the photon number is given by �n = |α|2 ∼ 1012, such that
the standard deviation of the photon number measurement for
such intense coherent states is on the order of σn = √

�n ∼
106. Therefore, the quantum fluctuations due to the Poisson
distribution of the coherent state cannot be resolved for such
high intensity laser sources due to σn/〈n〉 = 1/|α| ∼ 10−6,
and classical fluctuations of the driving laser system dominate.
As outlined in the experimental setup in Fig. 1, a stabilization
measurement is performed which selects only those events
in which the intensity of the laser shot is within the range
of σn/〈n〉 ≈ 0.5%. Even the presence of the neutral density
filter (NDF), needed to reduce the photon numbers for the
tomographic reconstruction, does not significantly alter these
fluctuations. which remain at σn/〈n〉 ≈ 1.5% after the NDF.
Consequently, instead of delivering a coherent state with a
well-defined amplitude |α|, the state generated by the driving
field source corresponds to

ρ̂ =
∫

d|α|p(|α|)|α〉〈α|, (18)

where p(|α|) ∝ exp[−(|α| − α0)/(2σ̃ 2)], with σ̃ �= σ in (8).
In the following, we restrict ourselves to relatively small val-
ues of σ̃ so that we can assume that δα remains approximately
the same despite the varying values of α present in each
laser shot.

In Fig. 11, we present the results obtained for increasing
values of σ̃ from left to right, respectively. It is worth noting
that, despite the presence of the intensity fluctuations, the
results display non-negative regions in their Wigner function
representation (specified at the top of each subplot), while the
overall features in terms of shape remain the same. However,
these negativities get reduced as σ̃ increases. This suggests
that, despite the presence of intensity fluctuations in the con-
sidered laser source, these do not constitute a major source
of infidelity in the generated state. Nevertheless, in conjunc-
tion with other factors such as those studied earlier, intensity

fluctuations can contribute to the absence of clear negative
regions, which in some cases could become comparable to the
artifacts introduced by quantum tomography methods.

D. Detector efficiency

In the experiments performed in Refs. [18,19] photode-
tectors are used to measure the photon numbers of the field
constituting the correlations map as presented in Fig. 2(a).
However, photodetectors are not perfect and not every photon
generated is also detected (in addition to photon losses in the
experimental setup). Therefore, the photon number of the qth
harmonic generated in the HHG experiment in laser shot (i)
is given by Mq(i), while the measured photon number is dif-
ferent, mq(i) = ηqMq(i), where ηq � 1 and takes into account
photon losses in the setup and the detector efficiency. Assum-
ing that the detector efficiency is the same for each harmonic
mode, we write ηq = η, which for the photodetectors used in
the experiment in Refs. [18,19] is around η = 0.2, i.e., ap-
proximately 20% detector efficiency. Thus, for the argument
of the energy conservation diagonal in Eq. (6) we can see that
it modifies to

nr (i) +
∑

q

η q Mq(i) = n0/2. (19)

This shows that the energy conserving diagonal for ideal
photodetection is changed in such a way that the slope of the
diagonal is reduced by the factor η and tends towards the total
photon number conserving slope in which q = 1.

V. CONCLUSIONS

In this work we have provided a detailed analysis of the
postselection schemes recently introduced for the process of
HHG (although the scheme is independent of the precise
process as long as energy conservation in the light genera-
tion process is given, e.g., for all parametric processes). We
have outlined the key ingredients of the scheme, which is
the treatment of energy conservation from the measurement
of the harmonic photon number and a portion of the driving
field after the interaction. Knowing the photon number from
the measurement of the photocurrent in photodiodes allows
one to infer about the energy conversion between the modes:
the generation of mq photons of the harmonic mode q require
from a total of qmq photons from the IR to be converted.
Postselection on these events allows one to condition the IR
state on the photon subtracted initial coherent state resembling
a Wigner function of a coherent state superposition, i.e., an
optical cat state.

We have shown that using intensity measurements and
classical postprocessing allows one to generate measurement
statistics which are characteristic of those of nonclassical
states of light, while having only classical input states. The
measurement characteristic looks like as if there would be a
nonclassical light field generated. The classical postselection
is performed after the measurement such that the nonclassical
states are only generated upon the detection including the state
tomography measurement. However, it is important to note
that it is only the measurement statistics which is important.
Every quantum experiment is a sampling experiment, and
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here the sampling reproduces the same statistics as if there
is an optical cat state propagating in the experiment. This is
further supported by the observation of nonclassical features
in the experimentally reconstructed Wigner function despite
intentionally including elements such as the neutral density
filters, which would otherwise destroy the nonclassicality.
Such cat states have been shown to be able to drive nonlinear
optical phenomena [23], and are particularly robust against
imperfections in quantum metrology [52]. Nevertheless, this
scheme opens the way for novel experiments towards the
generation of new quantum states of light. It was explicitly
shown that different postselection conditions lead to different
quantum states, which allows for further control of the final
measurement statistics. With this work we open the perspec-
tive for postselection schemes and conditioning approaches in
strong-field processes, and shows the richness of the quantum
state engineering protocol.

Finally, we emphasize that the theoretical description of the
quantum state of light after HHG is still intensively discussed
and investigated. For instance, the approximate expression of
the coherent state maps to coherent states, and the underlying
assumptions leading to such a mapping are missing a clear
presentation and the regime of its validity is still not known.
We believe there is a deeper underlying disparity between two
pictures, in this case a wave-like description for the quantum
state of the field after HHG and a particle-like measurement in
the conditioning and postselection approach. While the prod-
uct coherent state output of the field after HHG is based on
an oscillating charge current, the energy conservation of the
HHG process is not reflected in the coherent state amplitudes.
In contrast, the photon picture of absorption of IR photons for
the generation of XUV photons directly involves the energy
conservation of the process, which is not apparent in the
coherent state description. To conclude, we emphasize that
the non-Gaussianity of the generated quantum states comes
from the postselection of the measurement statistics, which
is evidently non-Gaussian. This leads to non-Gaussian states
albeit the input states are Gaussian.
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APPENDIX: NUMERICAL ANALYSIS
OF THE HOMODYNE STATISTICAL SAMPLING

The numerical implementation used for the statistical sam-
pling and subsequent Wigner function reconstruction through
the inverse Radon transformation, as shown in Figs. 8(b), 9,
and 10, was entirely performed in Python by using built-in
functions from different packages. Generally, the implementa-
tion involves numerically expressing the quantum optical state
ρ̂ with respect to a chosen basis. In our case we chose the Fock
basis, which is standard in the QUTIP package [53,54]. Given
that this basis naturally corresponds to an infinite-dimensional
Hilbert space, it is necessary to impose a cutoff on the di-
mension to make the numerical analysis feasible. This cutoff
must be high enough to ensure accurate representation of the
state, and, for the coherent state amplitudes considered in our
study, ncutoff ∈ [100, 200] suffices. Although higher values can
be used, they come at the cost of increased computational time
and memory resources.

Given the numerical representation of our state ρ̂, we
perform a homodyne measurement over it represented by
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FIG. 12. Example of numerically sampled homodyne trace used
for the Wigner function reconstruction through the inverse Radon
transformation. The parameters used for the postselected state from
which the homodyne trace was obtained are α = 1.2 and δα = −0.3
for panel (a), matching Fig. 7(a), and α = 3.0 and δα = −1.0 for
panel (b), matching Fig. 7(c). In panel (c), we considered a coherent
state of amplitude α = √

5. For representational purposes, we have
used Nφ = 100 and Nshots = 100.

the operator Î (φ) = âineiφ + â†
ine−iφ . The set of eigenvalues

{λi(φ)} of this operator determines the possible outcomes of
the measurement, with the associated eigenstates {|ϕi(φ)〉}
representing the state onto which the input state is
projected after the measurement. Consequently, the set
{〈ϕi(φ)|ρ̂|ϕi(φ)〉} represents the probability p(λi(φ)) of
obtaining each outcome λi(φ). Both the sets {λi(φ)}
and {p(λi(φ))} can be easily accessed using the
measurement_statistics function from the MEASURE-
MENTS subpackage of QUTIP. To simulate the outcomes
of an experiment implementing homodyne detection on an

input state ρ̂, we need to numerically sample from the set of
outcomes according to the specified probability distribution.
This can be achieved using the choices function of the
RANDOM package [55] which, given these two sets, can
sample a specified number of times, corresponding to the
number of experimental shots.

In Fig. 12 we present three examples of the results ob-
tained for different states (see caption). For representational
purposes, we chose Nφ = 100 and Nshots = 100 (per angle).
These represent the homodyne traces accessible experimen-
tally through homodyne measurements. As discussed in the
main text, these traces are subsequently postprocessed using
the inverse Radon transformation to approximately recon-
struct the Wigner function. This step involves numerically
integrating the integration kernel K (z) in Eq. (17), with ap-
propriately chosen integration limits ±kc. The integration was
performed using the quad function of the SCIPY package [56],
with the integration parameters carefully adjusted to achieve
convergence. Specifically, an upper bound of 1000 subinter-
vals was employed in the adaptive algorithm.

At the end of this process, we obtained a matrix W, where
each element Wi, j represents the value of the Wigner function
at a specific point in phase space. In our case, these matri-
ces where 20 × 20 in size. To enhance the resolution of the
resulting plots, we performed two-dimensional interpolation
of the data using the griddata function of the INTERPOLATE

subpackage in SCIPY. Specifically, cubic polynomial interpo-
lation was used.
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