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7.1 Introduction

Quantum optics stands as one of the most promising platforms for

practical applications in quantum information science, with light serving

as the primary carrier of information [1–3]. To advance such applications,

non-classical states of light are necessary — states inherently described by

quantum electrodynamics tools [4]. Some of the available non-classical light

sources rely on nonlinear interactions between light and matter [5], and one

of the most striking examples of these interactions is high-order harmonic

generation (HHG) [6, 7]. In HHG, a strong, pulsed laser field interacts

with matter, resulting in the emission of radiation, emitted as a periodic

series of ultrashort harmonics of the driving laser, spanning numerous

harmonic orders [8]. While semiclassical theoretical descriptions of HHG

processes — where light is treated classically while the matter system is

treated quantum mechanically — suffice to replicate most experimental

results, they leave untapped the potential of strong-field physics in quantum

optics.

Recent years have witnessed renewed attraction in analyzing strong-

field processes from a quantum optical perspective [9, 10]. This surge in

interest corresponds to the observation of strong laser-matter interactions

being useful for creating non-classical states. For example, by means of

HHG processes in atomic systems it is possible to generate non-classical

states of light [11–16] with intensities enough to drive nonlinear processes

in matter [17], as well as massively frequency-entangled states [18, 19],

light-matter entangled states [20, 21], and high-photon-number squeezed

states [22, 23]. Moreover, it has been demonstrated that the use of non-

classical light sources can significantly impact electron dynamics [24–26],

resulting in extended and better-resolved harmonic spectra [27], as well as

leading to new paradigms regarding the semiclassical interpretation of HHG

processes [28, 29].

In this chapter, we delve into recent findings in solid-state systems,

specifically semiconductor materials, along these lines where the quantum

optical behavior is brought to attention. These systems have been recently

analyzed in Ref. [30], demonstrating that the band structure of solids lead to

non-trivial effects on the quantum optical state of the system. However, the

content presented in this chapter builds upon Refs. [31, 32], which provide

a quantum optical description of strongly driven light-matter interactions

using two distinct basis sets to characterize the electronic system. Although

yielding similar outcomes, these different approaches offer diverse insights
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into electron dynamics and provide more suitable frameworks for computing

specific quantum information measures.

7.2 Semiclassical Analysis of the Light-Matter Interaction

In this section, we delve into the interaction between a laser field and a

solid-state system from a semiclassical perspective. Within this framework,

the solid-state system is treated quantum mechanically, while the field is

regarded as a linearly polarized classical field. Therefore, under the length

gauge and within the dipole approximation, the interaction can be described

under a single-active electron picture by the following Hamiltonian

Ĥ = Ĥcr + er̂iEcl(t), (7.1)

where e denotes the electron charge, r̂i represents the position operator

along the polarization direction εi with i denoting the direction (i ∈
{x, y, z}), and Ecl(t) stands for a classical electric field. It is worth noting

that the dipole approximation is applicable in this context since, as in

typical experimental implementations [33, 34], the laser fields used have

frequencies within the mid-infrared regime (λL ∼ 1–5μm), while typical

crystal lattices are on the order of 1 Å.

In the expression above, Ĥcr denotes the crystal Hamiltonian. We will

model this Hamiltonian using a two-band, tight-binding model, with the

band-dispersion relations for both the valence (v) and conduction (c) bands

satisfying

Ev(k) =
∑

i=x,y,z

∞∑

j=0

αjv,i cos(jkiai), (7.2)

Ec(k) = Eg +
∑

i=x,y,z

∞∑

j=0

αjc,i cos(jkiai), (7.3)

where k denotes the crystal momentum, ai represents the lattice constant

along the i direction, Eg corresponds to the band gap energy at the Γ

point, and αjm,i the coefficients arising from expanding the bands within

the tight-binding approximation [35].

In the following subsections, we will address the dynamics associated

with the Hamiltonian in Eq. (7.1) by employing two basis sets to expand

the electronic wavefunctions. First, we adopt a Bloch-based description

[36, 37], which are eigenstates of the crystal Hamiltonian and possess a
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well-defined crystal momentum. Subsequently, we shift to a Wannier-based

description as discussed in Ref. [38] which, in contrast, uses eigenstates

localized in space while being entirely delocalized in reciprocal space.

Despite the approaches being expected to yield similar results, given that

unitary transformations should not impact the physics of the process, they

offer distinct insights into the electron dynamics inside the crystal [39].

7.2.1 Bloch-Bloch Picture

In this subsection, we focus on a description in which the quantum state

of the electron in both the valence and conduction bands is represented

using the Bloch basis {|φk,m〉}, where m denotes the respective band.

As previously mentioned, these states are eigenstates of the crystal

Hamiltonian with eigenvalue Em(k), that is

Ĥcr |φk,m〉 = Em(k) |φk,m〉, (7.4)

while the matrix elements for the corresponding position operator r̂i
have both diagonal and non-diagonal contributions. In the following, we

express this operator in terms of its intraband (r̂i,tra) and interband (r̂i,ter)

components, that is

r̂i = r̂i,tra + r̂i,ter. (7.5)

As their name suggests, intraband terms involve matrix elements that

pertain to Bloch states within the same band, while interband terms relate

to Bloch states in different bands. More specifically, we have the following

expressions for these matrix elements

〈φk,m|r̂i,tra|φk′,l〉 = i�δm,l
∂

∂ki
δ(k− k′), (7.6)

〈φk,m|r̂i,ter|φk′,l〉 =
1

e
d
(i)
ml(k)δ(k − k′), (7.7)

with d
(i)
ml(k) the dipole moment matrix element between the two bands,

which can be generally expressed as [35–37]

d
(i)
ml(k) =

√
Ep,i[

2(El(k) − Ec(k))2
] , (7.8)

where Ep,i is the so-called Kane parameter, whose values are tabulated for

many materials.
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In terms of these intraband and interband operators, we can express the

Hamiltonian describing the dynamics of this system as

i�
∂ |ψ(t)〉
∂t

=
[
Ĥcr + er̂i,traEcl(t) + er̂i,terEcl(t)

]
|ψ(t)〉. (7.9)

Hereupon, we work in the interaction picture with respect to the

intraband excitation component. In more explicit mathematical terms,

we introduce in our equations |ψ(t)〉 = Ûtra(t)|ψ̄(t)〉. In this expression,

Ûtra(t) = eieAcl(t)r̂i,tra/� with Acl(t) the classical vector potential related

to the electric field via Ecl(t) = −∂Acl(t)/∂t . The rationale behind this

transformation arises from the fact that the intraband term, as presented

in Eq. (7.6), couples Bloch states with different values of k, leading to a set

of coupled differential equations when projecting Eq. (7.9) onto the Bloch

basis. By transitioning to the interaction picture with respect to this term,

we effectively shift our frame of reference to that of the oscillating electron

within the field, and work with the canonical momentum K = k−eεiAcl(t),

where εi denotes the polarization direction.

Within this frame, the Schrödinger equation in Eq. (7.9) transforms into

i�
∂|ψ̄(t)〉
∂t

=
[
Ĥcr(t) + er̂i,ter(t)Ecl(t)

]
|ψ̄(t)〉, (7.10)

where we have defined

Ĥcr(t) ≡ Û †tra(t)ĤcrÛtra(t), r̂ter(t) ≡ Û †tra(t)r̂terÛtra(t), (7.11)

and by projecting Eq. (7.10) with respect to the basis set spanned by

the canonical crystal momentum {|K,m〉}, we can rewrite this differential

equation as

i�
∂bm(K, t)

∂t
= Em

(
K + eεiAcl(t)

)
bm(K, t)

+
∑

l=c,v

d
(i)
ml

(
K + eεiAcl(t)

)
bl(K, t),

(7.12)

defined for both the valence and conduction bands, leading to a set of

coupled differential equations. In this expression, the bm(K, t) ≡ 〈K∣∣ψ̄(t)
〉

are the probability amplitudes of finding the electron with canonical crystal

momentum K in band m, with Em(k) the dispersion relation of the mth

band, given in Eqs. (7.2) and (7.3).

From this system of differential equations, where as we can see has

become uncoupled with respect to K, one can derive what are commonly

referred to as semiconductor Bloch equations [39, 40]. These equations
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govern the dynamics of the band populations and coherences, denoted

here as nm(K, t) ≡ b∗m(K, t)bm(K, t) and π(K, t) ≡ b∗v(K, t)bc(K, t),
respectively. The beneficial aspect about this matrix formulation is that one

can straightforwardly include environmental effects into the solid dynamics

by adding the corresponding terms affecting either the populations and/or

the coherences. Here, we focus on dephasing effects due to electron-electron

and electron-phonon couplings, which can be introduced in terms of what is

commonly known as a dephasing time T2 into our equations. With this, the

differential equations describing the population and coherence dynamics are

given by

i�
∂nm(K, t)

∂t
= θmEcl(t)

[
d(i)cv
(
K + eεiAcl(t)

)]∗
π(K, t) + c.c., (7.13)

i�
∂π(K, t)

∂t
=

[

Eg
(
K + eεiAcl(t)

)
+ Ecl(t)ξ

(i)
g

(
K + eεiAcl(t)

)− i

T2

]

× π(K, t) + Ecl(t)d
(i)
cv (t)

(
K + eεiAcl(t)

)
w(K, t), (7.14)

where we have defined θv ≡ 1 and θc ≡ −1, the band gap energy as Eg(k) ≡
Ec(k)−Ev(k), the difference between the Berry connection d

(i)
mm(k) of each

band as ξ
(i)
g ≡ d(i)cc (k)−d(i)vv (k) and the population difference between bands

as w(K, t) ≡ nv(K, t)− nc(K, t).
These equations allow us to compute one of the most characteristic

observables associated to HHG, commonly referred to as the HHG spec-

trum. This quantity is given as ω2|FT[ji,ter(t) + ji,tra(t)]|2, where ji,ter(t)

and ji,tra(t) represent the time-dependent inter and intraband terms which

are, specially for centrosymmetric materials in which the Berry connection

is zero [41], the dominant contributions to the HHG process [34, 36, 37, 40]

and FT denotes the Fourier transform.

On the one hand, interband dynamics provide an analogous mechanism

to the HHG process in atomic and molecular systems, governed by a three

step-like model [42–45]. Specifically, for solid-state systems (1) an electron-

hole pair is created due to the promotion of the electron to the conduction

band, (2) the pair gets accelerated by the field in their respective bands, and

(3) the pair meets each other in the valence band by emitting a photon with

energy equal to the energy difference between the bands [36, 37]. On the

other hand, intraband dynamics provide a mechanism for the emission of

radiation related to electron scattering within the energy dispersion profile

of the specific band in which it is located. This mechanism is often referred

to as Bloch oscillations [46].
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(a) (b)

Fig. 7.1 Contributions of interband and intraband currents to the HHG spectra. The
spectra have been computed for a ZnO semiconductor after interaction with a linearly
polarized field along the Γ − A direction, with a peak field strength 0.5V/Å, central
wavelength λL = 3.25μm and duration of Δt ≈ 96 fs (≈ 9 total cycles). In panel (a),
an ideal solid is considered where dephasing effects do not affect the electron dynamics
(T2 → ∞). In contrast, panel (b) considers the case where dephasing effects are indeed
included. The dashed blue region span the minimum and maximum energy band gaps
for the considered crystal direction.

These current components can be respectively computed from

Eqs. (7.13) and (7.14) as

ji,ter(t) = e
d

dt

[
tr(r̂i,terρ̂(t))

]
, (7.15)

ji,tra(t) = −e tr
([
r̂i,tra, Ĥcr]ρ̂(t)

])
, (7.16)

where ρ̂(t) is the density matrix with populations and coherences given by

nm(K, t) and π(K, t), when expanded in the canonical crystal momentum

basis.

In Fig. 7.1, we present the spectrum calculated for ZnO when excited

with a linearly polarized field along the Γ−A direction, with field strength

0.5 V/Å, central wavelength λL = 3.25μm, duration of Δt ≈ 96 fs (≈ 9

total cycles). Specifically, in panel (a) the dephasing time has been set

T2 → ∞, while in panel (b) it is set to T2 = 1 fs. As observed, in both

cases, interband contributions dominate over the intraband one within the

perturbative part of the spectrum, which is presented in the figure with

the blue region delimited by the minimum and maximum energy band

gaps for this solid direction. For energies smaller than the minimum energy

band gap, i.e., within the perturbative region, no clear dominance is found

between them, and the difference becomes less evident for smaller dephasing

times. However, dephasing effects have another important consequence,

which is that of making the harmonic peaks more evident than in the case
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without dephasing (T2 →∞). While the use of these small dephasing times

to obtain well-resolved theoretical spectra has been common practice in

theories describing HHG spectra in solids, their small values have also been

a subject of controversy within the attoscience community [47]. And this is

mainly because the used values are on the order of a quarter of an optical

driving field cycle, while experimental evidence suggest they should be likely

on the order of 15∼50 fs at least [48, 49].

In this context, some works justify their values by suggesting that

electrons with high values of crystal momentum could decohere at this

scales [36]. Others opposing to the presence of these small values propose

additional mechanisms beyond electron-photon dephasing. For instance, in

Ref. [50], the importance of propagation effects is highlighted in this regard.

On the other hand, in Ref. [51], through extensive numerical computations,

they observe that issues regarding numerical convergence could potentially

be a concern.

7.2.2 Wannier-Bloch Picture

Unlike the previous subsection, here we approach the same problem but

from a slightly different perspective. Instead of working with Bloch states

for both valence and conduction bands, in this subsection, we characterize

valence band states using a Wannier basis {|wj,v〉}, with j denoting the

Wannier site and v the band. For the conduction band, we utilize Bloch

states {|φk,c〉}. The main distinction between Wannier and Bloch states is

that the former can be defined to be maximally localized in space, while the

latter are completely localized in reciprocal space. Thus, this representation

in terms of localized states in the valence band provides an atomistic-

like interpretation of the HHG process in solids [38]. Specifically, within

the single-electron picture, one could understand the electron as initially

being localized in a given Wannier site and recombining with a potentially

different site, somewhat resembling the localization of an electron in an

atomic nucleus.

However, unlike Bloch states, Wannier states are not eigenstates of

the crystal Hamiltonian. This highlights an additional degree of freedom

electrons have in solid-state systems when compared to atomic ensembles:

electrons can hop from one Wannier site to another — a process that

does not occur between different atomic nuclei, which are far apart and

barely interact with each other. Specifically, the matrix elements of the

crystal Hamiltonian under Wannier basis are given, under the tight-binding
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approximation, by

〈wj,v|Ĥcr|wj′,v〉 = −Ivδ|j−j′|,1, (7.17)

where Iv < 0 corresponds to the hopping parameter. This relation implies

that we consider only nearest-neighbor interactions between the different

sites. However, depending on the specific system that is used, other

neighbors may need to be included. It is worth highlighting that, as we

are working with linearly polarized fields, in the following we consider a

one-dimensional description for the Wannier states such that j is a scalar

and not a vector representing the spatial location of the Wannier site in

real space.

Initially, the system’s state corresponds to a completely filled Fermi

sea, indicating that all Wannier states are occupied. However, here we

consider a single-active electron description, wherein we solve the equation

for a single electron and then combine all results at the end. Thus,

under these considerations and in terms of the mixed Wannier-Bloch basis

representation, we propose the following ansatz to solve the Schrödinger

equation in Eq. (7.9)

|ψ(t)〉 =
∑

j

aj(t) |wj,v〉+

∫
dkac(k, t) |φk,c〉, (7.18)

under the initial condition aj(0) = δj,j0 . Introducing this ansatz into

Eq. (7.9) and projecting it with respect to both a Wannier state |wj,v〉 and

a Bloch state |φk,c〉, we arrive at the following set of coupled differential

equations

i�
∂aj(t)

∂t
= −Ivaj−1(t)− Ivaj+1(t) + erjEcl(t)aj(t)

+ Ecl(t)

∫
dk djc(k)ac(k, t), (7.19)

i�
∂ac(k, t)

∂t
= Ec(k)ac(k, t) + i�Ecl(t)

∂ac(k, t)

∂ki
+ Ecl(t)

∑

j

d∗jc(k)aj(t),

(7.20)

where rj represents the position of the jth site, and djc(k) ≡
e 〈wj,v| r̂i |φk,v〉. This term corresponds to the transition matrix element

between an electron in site j of the valence band to a Bloch state with

crystal momentum k in the conduction band.

It is worth noting that the two main dynamics of HHG processes in

solids are accounted for in Eqs. (7.19) and (7.20). Specifically, intraband
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transitions within the valence band are represented in Eq. (7.19) through

the electron hopping between the neighboring sites. Similarly, intraband

transition within the conduction band are characterized by the crystal

momentum derivatives. Finally, interband transitions between the valence

and conduction bands are represented by the terms including the transition

dipole matrix elements djc(k).

For the first equation, and in line with the strong-field approximation

(SFA) assumptions [45], we consider the depletion due to conduction

band excitations to be very weak in comparison to intraband transitions.

Consequently, we approximate Eq. (7.19) as

i�
∂aj(t)

∂t
≈ −Ivaj−1(t)− Ivaj+1(t) + erjEcl(t)aj(t), (7.21)

and perform a discrete Fourier transform over the site label j by multiplying

the entire equation by e−iqj and summing over all sites j. Hence, if we define

aq(t) =
∑

j

aj(t)e
−iqj , (7.22)

the Schrödinger equation in Eq. (7.21) transforms into

i�
∂aq(t)

∂t
= −2Iv cos(q)aq(t) + i�eaEcl(t)

∂aq(t)

∂q
, (7.23)

with a denoting the lattice constant. This differential equation can also be

written as

i�
daq̃(t)

dt
= −2Iv cos(q̃ + eaEcl(t))aq̃(t) (7.24)

where q̃ = q − eaAcl(t), and whose solution is straightforwardly given by

aq̃(t) = exp

[
i

�
2Iv

∫ t

t0

dτ cos(q̃ + eaAcl(t))

]

aq̃(t0). (7.25)

Consequently, a solution to Eq. (7.21) can be obtained by inverting the

discrete Fourier transform. Thus, we get

aj(t) =
∑

q

eiq(j−j0) exp

[
i

�
2Iv

∫ t

t0

dτ cos(q̃ + eaAcl(t))

]

, (7.26)

where the initial condition aj(t0) = δj−j0 has already been implemented.

On the other hand, the solution of Eq. (7.20) is a first-order

inhomogeneous differential equation with well-defined homogeneous and
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inhomogeneous parts. Hence, its solution can be written as a linear

combination of the solution to the homogeneous part and a solution to

the inhomogeneous component. In this case, after introducing the initial

conditions, we arrive at [38, 52]

ac(K, t) = − i
�

∑

j

∫ t

t0

dt1 exp

[

− i
�

∫ t1

t0

dτEc
(
K + eεiAcl(τ)

)
]

× Ecl(t1)d∗jc
(
K + eεiAcl(t1)

)
aj(t1), (7.27)

which bears some resemblance to the atomic ionization process. More

specifically, at time t1 the electron is found at site j, which does not

necessarily have to be the initial j0 according to Eq. (7.26). Then, it

undergoes a transition to the conduction band driven by the field at time

t1, represented by the dipole matrix element djc(k). Finally, it accelerates

in the conduction band until time t, with the state gaining an additional

phase factor accounting for this process.

Taking into account that [38]

djc(k) = dvc(k)w̃ve
ikrj/�, (7.28)

where w̃m is a normalization constant for Wannier states which for one-

dimensional lattices is k-independent [53], we can write the transition dipole

matrix element as

D(t) = 〈ψ(t)|r̂|ψ(t)〉

≈ − i
�
|w̃v|2

∑

j,j′

∫ t

t0

dt1

∫
dKa∗j (t)dvc

(
K + eεiAcl(t)

)
ei(K+eεiAcl(t))rj/�

× e−iϕ(p,t,t1)/�Ecl(t1)d∗vc
(
K + eεiAcl(t1)

)

+ e−i(K+eεiAcl(t1))rj′/�aj′(t1) + c.c., (7.29)

where we have neglected the contribution of intraband transitions with

the aim of accounting only for the dominant interband transitions in the

non-perturbative part of the HHG spectrum. In this expression, we have

further defined ϕ(p, t, t1) ≡ ∫ t
t1

dτEc(K+ eEiAcl(τ)). This time-dependent

dipole moment, whose Fourier transform leads to the HHG spectrum, yields

similar dynamics to those occurring in atomic systems. First, at time t1 the

electron gets ionized from the Wannier site j′ to the conduction band.

Within the conduction band, it accelerates gaining a phase ϕ(p, t, t1), and

recombines at time t with the jth site.
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Fig. 7.2 The interband contribution to the HHG spectrum, following the Wannier-Bloch
approach presented in the text, is computed for a ZnO material that has been excited
with a linearly polarized field along the Γ− A direction. In this case, the field strength
considered is E0 ≈ 0.2V/Å, central wavelength λL = 3.0μm, and duration Δt ≈ 100 fs
(≈ 10 optical cycles). The different colors represent the different contributions to the
spectra depending on the distance between the initial and final Wannier sites. The black
curve represents the total contribution. This figure is based on Fig. 3 in Ref. [38].

Given that in general j 
= j′, one can already observe one of the main

distinctions between HHG in atoms and solid-state systems. While for

atoms the electron performs closed trajectories, meaning that ionization

and recombination take place at the same real-space position, for solids this

is not necessarily the case. This could be a potential explanation for the

reduced dependence of harmonic generation on the field’s ellipticity found

in solid systems [34]. However, depending on the material considered and

how the excitation process takes place (for instance, the crystal direction

along which the laser is polarized), the influence of increasing values

Δj = |j − j′| on the HHG spectra might differ. In Fig. 7.2, this is shown

for a ZnO material excited by a linearly polarized field parallel to the

Γ − A direction, with field strength E0 ≈ 0.2 V/Å, central wavelength

λL = 3.0μm and duration of Δt ≈ 100 fs (≈ 10 optical cycles). As observed,

in this case, the contribution to the HHG spectra starts to decay already for

Δj ≥ 2, meaning that for this particular case, the HHG process is highly

localized.

It is worth noting that the HHG spectra obtained here recovers the

characteristic features shown in Fig. 7.1 (a) (black curve), with a plateau

structure defined within the lowest and maximum values of the energetic

band gap. Furthermore, in this figure we also observe that the absence of

dephasing effects leads to poorly resolved harmonic peaks. In this direction,
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it has been recently observed in Ref. [54] that the destructive interference

of long trajectories, i.e., those with Δj being large, recovers well-resolved

harmonic peaks without having to resort to extremely small dephasing

times. Similar to atomic systems, this destructive interference could be

related to additional phase factors depending on the intensity profile of the

applied laser field.

7.3 Quantum Optical Analysis of the Light-Matter

Interaction

The discussion thus far on the interaction between strong laser fields and

solid-state systems has remained at a semiclassical level: the solid-state

system has been studied under a quantum mechanical framework while

light has been treated as a classical field. However, as mentioned in the

Introduction, delving into the quantum optical regime enables the explo-

ration of concepts such as non-classical light and light-matter entanglement,

broadening the spectrum of degrees of freedom in strong-field physics. In

the following subsections, after briefly introducing the fundamentals of

quantum optics, we expand the previously presented semiclassical analysis

to the quantum optical context, drawing from Refs. [31, 32]. We illustrate

how the various electron dynamics within the solid affect the joint state of

the system following the interaction between light and solid.

7.3.1 A Brief Introduction to Quantum Optics

Quantum optics explores the properties of light and its interaction with

matter under a quantum mechanical perspective. As the aim of this chapter

is to delineate the interaction between light and matter considering the

quantum mechanical nature of light, we provide an overview of fundamental

concepts and tools within quantum optics for clarity and contextual

understanding.

The foundations of quantum optics rely on the realization that the

energy associated with an electromagnetic field in free space can be

represented as a collection of uncoupled harmonic oscillators (see, e.g.,

Refs. [55–58] and references therein). Within this assembly, each electro-

magnetic field mode, characterized by a wavevector k and a polarization μ,

corresponds to an oscillator. The Hamiltonian operator associated to this

oscillator is characterized by

Ĥk,μ =
1

2

[
p̂k,μ + ω2

kx̂
2
k,μ

]
, (7.30)
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where p̂k,μ and x̂k,μ are the canonical operators of the harmonic oscillator,

satisfying the set of commutation relations

[x̂k,μ, p̂k,μ] = i�,
[
x̂k,μ, x̂

′
k′,μ
]

=
[
p̂k,μ, p̂

′
k′,μ
]

= 0. (7.31)

The Hamiltonian introduced in Eq. (7.30) corresponds to a single har-

monic oscillator. Hence, for the entire electromagnetic field the Hamiltonian

is constructed as a linear combination of these individual oscillators, i.e.,

Ĥfield =
∑

k,μ Ĥk,μ. However, for simplicity in the subsequent discussion

within this section, we focus solely on a single electromagnetic field mode

(k, μ). Consequently, we omit the (k, μ) sub-indexes when referring to the

operators to enhance clarity. Furthermore, we introduce a set of creation

and annihilation operators, denoted as â† and â respectively, linked to the

canonical variables x̂ and p̂ by the following canonical transformations

x̂ =

√
�

2ω

[
â† + â

]
, p̂ = i

√
�ω

2

[
â† − â], (7.32)

which satisfy the following set of commutation relations

[
â, â†

]
= 1, [â, â] =

[
â†, â†

]
= 0. (7.33)

According to these, the Hamiltonian in Eq. (7.30) can be rewritten as

Ĥ = �ω

(

â†â+
1

2

)

, (7.34)

which is diagonalized by the set of Fock states {|n〉 : n ∈ �}1 with

corresponding eigenvalues {�ω(n + 1/2) : n ∈ �}. These states are

often referred to as photon-number states, with |n = 0〉 usually denoted

as the vacuum state, and they represent the discrete excitations of the

electromagnetic field. The action of the creation and annihilation operators

over these states is expressed as

â |n〉 =
√
n |n− 1〉 , â† |n〉 =

√
n+ 1 |n+ 1〉, (7.35)

which respectively destroy and create an electromagnetic field excitation.

In this quantum optical context, the classical electric field Ecl(t) and

vector potential Acl(t) are substituted with the quantum mechanical

1Here,� represents the set of whole numbers, i.e., the natural numbers including zero.
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operators Â(t) and Ê(t). The single-mode components of these operators

are given by

Â(t) =

√
�

2ωε0V

[
âe−iωt + â†eiωt

]
(7.36)

Ê(t) = i

√
�ω

2ε0V

[
âe−iωt − â†eiωt

]
, (7.37)

where ε0 represents the vacuum permittivity and V stands for the

quantization volume arising when expanding the electromagnetic field in

terms of discrete modes. Specifically, for Fock states, we get 〈n|Ê(t)|n〉 = 0

∀n ∈ �, while their variance scales proportionally with the number of

photons n, i.e., ΔE2(t) = (�ω)/(2ε0V )[2n+ 1]. Moreover, when examining

the uncertainty product between the quadrature operators x̂ and p̂, which

are conjugate variables, it is observed that ΔxΔp = (�/2)(2n+1), generally

exceeding Heinseberg’s uncertainty limit of �/2. Consequently, Fock states

do not offer an optimal description of classical descriptions of light, as they

generally fail to reach this uncertainty product.

In this context, coherent states [59,60] of light reintroduce the notion of

a classically oscillating field that provides a solution to Maxwell’s equations

in vacuum. The coherent states, denoted as {|α〉 : α ∈ �}, are described as

displaced vacuum states, that is

|α〉 = D̂(α) |0〉, (7.38)

where D̂(α) ≡ exp
[
αâ† − α∗â] represents the displacement operator. From

this definition, and using the displacement operator properties, it follows

that coherent states are eigenstates of the creation operator, that is,

â |α〉 = α |α〉. (7.39)

This last property of coherent states becomes particularly useful when

evaluating the mean value of the electric field operator

〈α|Ê(t)|α〉 =

√
2�ω

ε0V
|α| sin(ωt− θ), (7.40)

where we have written α = |α|eiθ. Thus, coherent states of light indeed

restore the oscillating nature of the electric field and result in a variance

of this operator independent of the number of photons 〈n〉 = |α|2.

Specifically, we obtain ΔE2 = (�ω)/(2ε0V ). This behavior arises from

coherent states providing an optimal description for the classical description
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of light, as they saturate the product between the quadrature operators’

variance, i.e., ΔxΔp = (�/ω). This, among other reasons [61], justifies our

previous statement: that these states recover a classical description of light.

Therefore, we refer to non-classical states of light as those states exhibiting

features unaccounted for by classical optics theories, Fock states being a

particular example.

In general, distinguishing between classical and non-classical states of

light often relies on the definition of specific observables. One of the most

crucial, although not the sole determinant, is the Wigner function [62, 63],

which captures all the information about a quantum state in phase space.

Initially proposed in the context of quantum corrections to thermodynamic

equilibrum [62], it has found widespread use in quantum optics as an

indicator of non-classical states of light [64,65] by featuring negative values

in certain phase space regions. Nonetheless, it is essential to note that the

absence of negative values in this function does not inherently imply the

classicality of the state. Other indicators of non-classical behavior, like sub-

Poissonian statistics, might manifest in states characterized by positive-

valued Wigner functions.

The Wigner function of a given quantum state ρ̂ can be computed as [66]

W (β) = tr
[
ρ̂D̂(β)Π̂D̂(−β)

]
, (7.41)

where Π̂ denotes the parity operator, and β a parameter related to the

optical quadratures through x ≡ Re(β) and p ≡ Im(β). In Fig. 7.3,

we present examples of different light states displaying different Wigner

functions. In panel (a), a coherent state with amplitude α = 0 is shown, i.e.,

a vacuum state. These states feature Gaussian Wigner functions without

(a) (b) (c)

Fig. 7.3 Wigner functions of different states. (a) A vacuum state represented by a
coherent state with |α| = 0. (b) Wigner function for a Fock state |n = 1〉. (c) Wigner
function of a coherent state superposition |α〉 − |−α〉, with |α| = 1.5.
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negative regions. Conversely, Fock states with n > 0 exhibit Wigner

functions containing negative regions, as shown in panel (b) for |n = 1〉.
Interestingly, while coherent states themselves lack negative Wigner values

in phase space, this is not necessarily true for superpositions composed by

different coherent states, i.e., |Φ〉 =
∑N
i=1 ai |αi〉, with N ≥ 2 and αi 
= αj

∀i 
= j. In panel (c), we illustrate the case of a coherent state superposition

|Φ〉 ∝ |α〉 − |−α〉 with α = 1.5. In this instance, quantum interference

between the two terms in the superposition, represented by the two maxima

at Re(β) ≈ ±1.5, leads to negative regions between these maxima within

the Wigner function.

While the Wigner function can indicate non-classical aspects in individ-

ual modes of light, in many other situations we have systems composed

by multiple subsystems, forming a composite Hilbert space denoted as

HT =
⊗Ns

i=1Hi, where Ns represents the number of subsystems. In

optics, these Hilbert spaces often represent various modes of light, such

as different polarization and/or frequency modes. In this broader context,

states |ψ〉 ∈ HT may exhibit non-classical features beyond the mere

presence of negative regions in their Wigner functions. A notable example is

the concept of entanglement, which pertains to certain quantum states that

cannot be expressed as the tensor product of their individual components

[67], that is

|ψ〉 is entangled if |ψ〉 
=
Ns⊗

i=1

|ψHi〉, (7.42)

where |ψHi〉 ∈ Hi.
Determining whether a given state ρ̂ is entangled is a problem known

to be NP-hard2 [68]. However, in certain scenarios, such as for bipartite

systems involving only two subsystems, it is possible to define mathematical

functions that offer a quantitative assessment of entanglement. These

functions are commonly known as entanglement measures. Among these

measures, one of the most prominent is the von Neumann entropy [69], also

referred to as entanglement entropy [70]. For a pure state |ψAB〉 ∈ HA⊗HB,

this quantity is defined as

S(ρ̂) := − tr[ρ̂A logd(ρ̂A)], (7.43)

2Nondeterministic polynomial (NP) problems comprise decision problems for which
instances with affirmative answers can have their proofs verified in polynomial time.
NP-hard problems, in this context, are as challenging as NP problems but may not
necessarily belong to NP.
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where ρ̂A is the reduced density of |ψAB〉 with respect to subsystem B,

defined as ρ̂A ≡ trB(|ψAB〉〈ψAB|). In this expression, d represents the

dimension of HA. Notably, although in this expression we have focused on

subsystem A, the usage of A and B can be interchanged. If our quantum

state is separable, i.e., |ψAB〉 = |ψA〉 ⊗ |ψB〉, then it can be proven that

S(ρ̂) = 0, indicating no entanglement. Conversely, states where S(ρ̂) = 1

are termed maximally entangled. Utilizing entangled states, particularly

maximally entangled ones, forms the cornerstone of quantum information

science applications such as quantum communication [71,72] and quantum

computation [73, 74], among others [75].

However, in numerous scenarios, both Hilbert spaces HA and HB can

have exceedingly large dimensions. Evaluating the entanglement entropy

in Eq. (7.43) under these circumstances becomes numerically challenging,

prompting the search for more computationally tractable alternatives. One

such example is the linear entropy, defined as

Slin(ρ̂) := 1− tr
(
ρ̂2A
)
, (7.44)

where ρ̂2A is termed the purity of the state ρ̂A. The linear entropy

corresponds to a second-order expansion of the von Neumann entropy in

terms of ρ̂A, and akin to the latter, it becomes zero for separable states. In

contrast, its maximum value is bounded by 1− (1/d).

In Fig. 7.4, we present both entanglement measures evaluated on a

generic two-qubit state of the form |ΨAB〉 =
√
p |0A〉⊗|0B〉+

√
1− p |1A〉⊗

|1B〉 as a function of p. For p = 0 and p = 1, corresponding to a

separable state, both entanglement measures tend to zero. Conversely,

the maximum value for both functions occurs at p = 0.5, representing a

maximally entangled state |ψAB〉 ∝ |0A〉 ⊗ |0B〉 + |1A〉 ⊗ |1B〉. The use of

these entanglement measures, along with the Wigner function, will be of

fundamental interest in the subsequent sections of this chapter.

7.3.2 Bloch-Bloch Picture

With all the fundamental quantum optics concepts set, let us delve into a

quantum optical treatment of the interaction between a solid-state system

and a strong laser field, based on an expansion of the electronic states in the

Bloch basis. Specifically, we built upon the analysis provided in Sec. 7.2.1

by including in the Hamiltonian presented in Eq. (7.1) the electric field

operator. In this context, the Hamiltonian reads

Ĥ(t) = Ĥcr + er̂i,traÊ(t) + er̂i,terÊ(t) + Ĥfield, (7.45)
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Fig. 7.4 Entanglement measures evaluated for a state in the form
√
p |0A〉 ⊗ |0B〉 +√

1− p |1A〉 ⊗ |1B〉 plotted as functions of p. The black solid curve represents the
entanglement entropy, while the grey dashed curve represents the linear entropy. As
expected, both measures tend toward zero when the state becomes separable (p = 0 and
p = 1), and they reach a maximum at p = 0.5 corresponding to a maximally entangled
state.

where Ĥfield represents the free-field Hamiltonian and Ê(t) the electric

field operator. Our objective is to characterize interactions with lasers of

finite duration, which ultimately necessitates the inclusion of a continuum

spectrum of light [13]. However, for simplicity, we limit ourselves to a

discrete set of modes spanning the harmonic modes from the central

frequency of the employed pulse, ωL, up to the cutoff region of the harmonic

spectrum, ωqc = qcωL. Thus, we represent the free-field Hamiltonian as

Ĥfield ≡
∑qc
q=1 �ωqâ

†
q âq where ωq = qωL (ωq=1 ≡ ωL) and â†q (âq) is the

creation (annihilation) operator acting on the field mode of frequency q.

The electric field operator is similarly expressed as

Ê(t) = if(t)

qc∑

q

g(ωq)
(
âq − â†q

)
, (7.46)

where g(ωq) ≡
√
�ωq/(2ε0V ) and 0 ≤ f(t) ≤ 1 is a dimensionless function

accounting for the pulse envelope.

Within this approximation of considering a discrete set of modes, we

can represent the initial state of the system composed by

|Ψ(t = t0)〉 = |φk0,v〉 ⊗ |αL〉
qc⊗

q=2

|0q〉, (7.47)

such that the single-active electron is initially in the valence band with

crystal momentum k0, while the driving field mode is in a coherent state
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αL with amplitudes on the order of 105. Meanwhile, as all harmonic modes

begin in an unoccupied state, they are initialized as vacuum states. The

overall system dynamics are described by the Schrödinger equation

i�
∂ |Ψ(t)〉
∂t

=
[
Ĥcr + er̂i,traÊ(t) + er̂i,terÊ(t) + Ĥfield

]
, (7.48)

although the analysis can be further simplified by introducing some unitary

transformations. Thus, using

|Ψ(t)〉 = D̂1(αL)e−iĤfieldt/�
∣
∣
∣Ψ̃(t)

〉
, (7.49)

the differential equation in Eq. (7.48) can be rewritten as

i�
∂|Ψ̃(t)〉
∂t

=
[
Ĥcr + er̂i,tra

(
Ecl(t) + Ê(t)

)

+ er̂i,ter
(
Ecl(t) + Ê(t)

)]|Ψ̃(t)〉, (7.50)

where Ecl(t) = tr(Ê(t) |Ψ(t0)〉〈Ψ(t0)|). These transformations introduce an

extra time dependence on the electric field operator, effectively shifting us

to the interaction picture with respect to Ĥfield

Ê(t) = if(t)

qc∑

q

g(ωq)
(
âqe
−iωqt − â†qeiωqt

)
, (7.51)

and displaces the origin of our frame of reference in phase space onto

the coherent state |αL〉, thus leading to the following initial state for this

equation

|Ψ̃(t)〉 = |φk0,v〉
qc⊗

q=1

|0q〉. (7.52)

The transformations we have outlined are customary in the quantum

optical analysis of HHG processes in atomic [11–13, 15] and molecular

[21] systems. When examining solid-state targets, along the same lines

to what is done in the semiclassical analysis, we introduce an additional

transformation akin to the Ûtra(t) performed in Sec. 7.2.1. Specifically, we

consider

|Ψ̃(t)〉 = ei(eAcl(t)+Â(t))r̂i,tra/�|Ψ̄(t)〉, (7.53)

with Â(t) satisfying Ê(t) = − ∂Â(t)
/
∂t . By substituting this expression

into Eq. (7.50) and considering terms up to first order in g(ωq) ∼ 10−8

a.u., which weighs the quantum optical fluctuations, we can approximate



May 14, 2024 17:9 High-Order Harmonic Generation in Solids 9in x 6in b5425-ch07 page 159

Quantum Optical Analysis of HHG in Semiconductors 159

our differential equation as

i�
∂|Ψ̄(t)〉
∂t

≈ [Ĥcr(t) + er̂i,ter(t)
(
Ecl(t) + Ê(t)

)

− ie�−1v̂i,tra(t)Â(t)
]|Ψ̄(t)〉, (7.54)

where v̂i,tra ≡ [r̂i,tra, Ĥcr]. Additionally, the extra time-dependent terms

observed in the operators acting on the electron resemble those outlined

in Eq. (7.11). Furthermore, these expressions have been derived assuming

that inter- and intraband terms are the primary contributors to the HHG in

solids. Yet, other factors like the mixture current, whose effects are not fully

comprehended from the semiclassical perspective [40], are not considered

in this analysis.

The reason for introducing these transformations lies in Eq. (7.54),

where the first two terms describe the semiclassical evolution detailed

in Sec. 7.2.1. Having solved for these terms as presented in previous

subsections, we introduce an additional unitary transformation |Ψ̃(t)〉 =

Ûsc(t, t0)|Ψ̃′(t)〉 with Ûsc(t, t0) ≡ T̂ exp
[
−i ∫ tt0 dτ ˆ̄Hsc(τ)/�

]
, accounting for

the semiclassical dynamics. Here, T̂ denotes the time-ordering operator,

and ˆ̄Hsc(τ) ≡ Ĥcr(t)+er̂i,ter(t)Ecl(t). As a result, our Schrödinger equation

transforms into

i�
∂|Ψ̃′(t)〉
∂t

≈ [eˆ̄ri,ter(t)Ê(t)− ie�−1 ˆ̄vi,tra(t)Â(t)
]|Ψ̃′(t)〉, (7.55)

where ˆ̄ri,ter ≡ Û †sc(t, t0)r̂i,ter(t)Ûsc(t, t0) and ˆ̄vi,tra ≡ Û †sc(t, t0)v̂i,tra(t)

Ûsc(t, t0).

With the aim of solving this differential equation, we expand our state

in the {|K,m〉} basis, that is

|Ψ̃′(t)〉 =
∑

m=v,c

∫
dK |K,m〉 ⊗ |Φm(K, t)〉, (7.56)

where |Φm(K, t)〉 = 〈K,m|Ψ̃′(t)〉 corresponds to the quantum optical state

conditioned on finding an electron in band m and with canonical crystal

momentum K. Introducing this expression into Eq. (7.55) and projecting

the whole equation with respect to |K,m〉, we arrive at

i�
∂

∂t
|Φm(K, t)〉 =

∑

l=c,v

∫
dK′

[
e 〈K,m| ˆ̄ri,ter(t) |K′, l〉 Ê(t)

− ie�−1 〈K,m| ˆ̄vi,tra(t) |K′, l〉 Â(t)
]
. (7.57)



May 14, 2024 17:9 High-Order Harmonic Generation in Solids 9in x 6in b5425-ch07 page 160

160 High-Order Harmonic Generation in Solids

In order to further proceed in solving the set of differential equations

spanned by Eq. (7.57), it is necessary to evaluate the electronic matrix

elements appearing in the above expressions. By taking into account the

semiclassical evolution described in Eq. (7.12), which leads us to

Ûsc(t, t0) |K,m〉 = bv(K, t;m) |K, v〉+ bc(K, t;m) |K, c〉, (7.58)

and after some algebraic operations, it is possible to show that
∫

dK′ 〈K,m| ˆ̄ri,ter(t) |K′, l〉 |K′, l〉

=
∑

i=v,c

∑

j=v,c

b∗i (K, t;m)b∗j (K, t; l)dij
(
K + eεiAcl(t)

) |K, l〉

≡ e−1M (ter)
m,l |K, l〉,

(7.59)

while for the other term we get
∫

dK′ 〈K,m| ˆ̄vi,tra(t) |K′, l〉 |K′, l〉

= i�
∑

i=v,c

b∗i (K, t;m)bi(K, t; l)
∂

∂Ki

[
Ei

(
K + eεiAcl(t)

)] |Φl(K, t)〉

≡ ie−1�M (tra)
m,l (K, t) |Φl(K, t)〉.

(7.60)

These expressions we have just presented are associated with the

inter- and intraband currents delineated in Eqs. (7.15) and (7.16). The

former corresponds to the time-dependent interband polarization, while

the latter deals with the intraband current. However, the quantum optical

treatment conducted here has been performed under a noiseless scenario,

lacking explicit inclusion of dephasing effects. Nonetheless, these could

be incorporated when evaluating the matrix elements M
(ter)
m,l (K, t) and

M
(tra)
m,l (K, t). It is important to note that this approach is akin to describing

the crystal using non-Hermitian Hamiltonians. Similar strategies have been

employed in semiclassical analyses [76], yielding analogous outcomes to

those presented in Sec. 7.2.1.

Introducing Eqs. (7.15) and (7.16) into Eq. (7.57), and explicitly

distinguishing between projections on valence and conduction bands, we

obtain the following set of coupled differential equations

i�
∂

∂t
|Φv(K, t)〉 =

[
M (ter)
v,v (K, t)Ê(t) +M (tra)

v,v Â(t)
] |Φv(K, t)〉

+
[
M (ter)
v,c (K, t)Ê(t) +M (tra)

v,c Â(t)
] |Φc(K, t)〉, (7.61)



May 14, 2024 17:9 High-Order Harmonic Generation in Solids 9in x 6in b5425-ch07 page 161

Quantum Optical Analysis of HHG in Semiconductors 161

i�
∂

∂t
|Φc(K, t)〉 =

[
M (ter)
c,v (K, t)Ê(t) +M (tra)

c,v Â(t)
] |Φv(K, t)〉

+
[
M (ter)
c,c (K, t)Ê(t) +M (tra)

c,c Â(t)
] |Φc(K, t)〉, (7.62)

where each of the equations have both a homogeneous and an inhomo-

geneous component. Thus, their solution can be expressed as the sum of

the solution to the homogeneous equation plus a particular solution to the

inhomogeneous one. Let us start by the former, for which we have

i�
∂

∂t
|Φi,hom(K, t)〉

=
[
M

(ter)
i,i (K, t)Ê(t) +M

(tra)
i,i Â(t)

] |Φi,hom(K, t)〉, (7.63)

and taking into account the definitions we consider in a discrete mode

description for the electric field and vector potential operators

Ê(t) = −if(t)

qc∑

q=1

g(ωq)
(
â†qe

iωqt − âqe−iωqt
)
, (7.64)

Â(t) = −
∫

dtÊ(t) = i

qc∑

q=1

g(ωq)
[
Fq(t)â

†
q − F ∗q (t)âq

]
, (7.65)

wherein Eq. (7.65) we have defined F (t) ≡ ∫ dtfq(t) with fq(t) ≡ f(t)eiωqt,

we can rewrite Eq. (7.63) as

i�
∂

∂t
|Φi,hom(K, t)〉

= i

qc∑

q=1

g(ωq)

[(
−M (ter)

i,i (K, t)fq(t) +M
(tra)
i,i (K, t)Fq(t)

)
â†q

−
(
−M (ter)

i,i (K, t)f∗q (t) +M
(tra)
i,i (K, t)F ∗q (t)

)
âq

]

|Φi,hom(K, t)〉.
(7.66)

As observed, the homogeneous part of this equation is given by a linear

combination of creation and annihilation operators acting on the harmonic

modes. This equation bears a resemblance to those derived in the analysis

of HHG processes in atomic [11–13, 15] and molecular [21] systems. From

these analysis, we learned that their solution can be expressed as

|Φi,hom(K, t)〉 = D̂(χi(K, t, t0)
) |Φi,hom(K, t0)〉, (7.67)

where in this expression we have defined

D̂(χi(K, t, t0)) ≡
qc∏

q=1

[eiϕq(K,t,t0)D̂q(χ
(q)
i (K, t, t0))], (7.68)
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with ϕq(K, t, t0) a phase factor arising from the use of the Baker–Campbell–

Hausdorff formula [12,13,56] in order to write the solution above, and where

χ
(q)
i (K, t, t0) is given by

χ
(q)
i

(
K, t, t0

)
=

1

�
g(ωq)

∫ t

t0

dτ
[
−M (ter)

i,i (K, τ)fq(τ) +M
(tra)
i,i (K, τ)Fq(τ)

]
.

(7.69)

Thus, by adding to this solution a particular solution to the inhomoge-

neous equations, we find the following recursive relation for the solutions

of Eqs. (7.62) and (7.61),

|Φv(K, t)〉 = D̂(χv(K, t, t0)
) |Φv(K, t0)〉

− i

�

∫ t

t0

dt′D̂(χv(K, t, t′)
)M̂v,c(K, t

′) |Φc(K, t′)〉, (7.70)

|Φc(K, t)〉 = D̂(χc(K, t, t0)
) |Φc(K, t0)〉

− i

�

∫ t

t0

dt′D̂(χc(K, t, t′)
)M̂c,v(K, t

′) |Φv(K, t′)〉, (7.71)

where in this expression we have defined for the sake of clarity

M̂i,j(K, t
′) ≡M (ter)

i,j (K, t)Ê(t) +M
(tra)
i,j Â(t). (7.72)

By combining these equations, while keeping terms up to first order in

g(ωq), we get after introducing the initial conditions

|Φv(K, t)〉 = δ(K−K0)D̂(χv(K, t, t0)
) qc⊗

q=1

|0q〉 (7.73)

|Φc(K, t)〉 = −δ(K−K0)
i

�

∫ t

t0

dt′D̂(χc(K, t, t′)
)M̂c,v(K, t

′)
qc⊗

q=1

|0q〉.

(7.74)

Likewise, for the joint state of the system we obtain, up to a normalization

factor,

|Ψ̃′(t)〉 =
∑

m=v,c

∫
dK |K,m〉 ⊗ |Φm(K, t)〉

= D̂(χv(K0, t, t0)
) |K0, v〉

qc⊗

q=1

|0q〉

− i

�

∫ t

t0

dt′D̂(χc(K0, t, t
′)
)M̂c,v(K0, t

′) |K0, c〉
qc⊗

q=1

|0q〉. (7.75)
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It is worth noting that, similar to the quantum optical description of

strong-field processes in atomic systems [11–13,15], for solid-state systems

each electromagnetic field mode experiences a displacement by an amount

χ
(q)
i (K, t, t0). However, given that the electron dynamics in solids are

different to those occurring in atomic systems, this quantity gets influenced

both by interband and intraband dynamics. In the remainder of this

subsection, we study how these two impact the final quantum optical state.

Nevertheless, before doing so, we return to the original frame of reference

with respect to the electron dynamics, i.e.,

|Ψ̃(t)〉 = eie(Acl(t)+Â(t))r̂i,tra/�Ûsc(t, t0)|Ψ̃′(t0)〉, (7.76)

which in the asymptotic limit t→∞ leads to

|Ψ̃(t)〉 = Ûsc(t, t0)|Ψ̃′(t0)〉. (7.77)

At this point, it is crucial to note that in Eq. (7.76), the unitary

transformation eieÂ(t)r̂i,tra/� inherently introduces entanglement between

the canonical crystal momentum and the field modes. This arises as

r̂i,tra is not diagonal with respect to K. However, in the discrete mode

description employed here, where we introduce the envelope function f(t)

to capture the field’s envelope, it happens that limt→∞ f(t) = 0, leading

to limt→∞ Â(t) = 0. Therefore, within the scope of our current framework,

this additional operator does not entangle the field and the electron at the

final time. Nevertheless, it does introduce entanglement at the intermediate

steps of the dynamics, which are essentially caused by the coupling of the

intraband dynamics to the different field modes.

The analysis we aim to perform mainly focuses on HHG processes, where

the electron ends up in the valence band of the solid-state system. Here,

we impose the electron to be found in the valence band by applying the

projector operator P̂v ≡
∫

dK |K, v〉〈K, v|, and trace out the electronic

degrees of freedom. By doing this, while assuming that the probability of

finding in the valence band electrons initially born in the conduction band

is small, we arrive at

|Φv(K, t)〉 ≈ D̂
(
χv(K0, t, t0)

) qc⊗

q=1

|0q〉, (7.78)

similar to what is found for atomic systems. However, it is important

to note here that, in this analysis, we have neglected contributions in

the form 〈K, v| Ûsc(t, t0) |K′, c〉, which are considerably smaller than the

diagonal ones with respect to the valence band as they scale with g(ωq). The



May 14, 2024 17:9 High-Order Harmonic Generation in Solids 9in x 6in b5425-ch07 page 164

164 High-Order Harmonic Generation in Solids

(a) (b)

Fig. 7.5 Mean photon numbers calculated for various harmonics using Eq. (7.78). The
analysis pertains to the ZnO material under the influence of a linearly polarized laser
pulse aligned along the Γ − A crystal direction. The laser settings include a peak
field strength of 0.5V/Å, a central wavelength of λL = 3.25μm, and a duration of
Δt ≈ 96 fs (≈9 optical cycles). In panel (a), an ideal solid scenario is depicted, where
dephasing effects are absent (T2 → ∞). In contrast, panel (b) accounts for scenarios
where dephasing effects are included. The dashed blue region denotes the minimum and
maximum energy band gaps in the specified solid direction.

introduction of these terms would indeed establish entanglement between

the electron and electromagnetic field states. However, our subsequent

exploration using a Wannier-based analysis — a more convenient repre-

sentation for light-matter entanglement analyses — reveals that even in

the scenario considered here, where ZnO is analyzed, the amount of light-

matter entanglement remains marginal even in the many-electron limit.

To validate the outcomes derived from Eq. (7.78), we proceed to evaluate

the mean photon number of the various harmonic modes at time t→∞. To

some extent, this observable should mirror the harmonic spectra observed

following HHG processes [77]. Figure 7.5 illustrates the outcomes of this

computation for both (a) the no-dephasing scenario (T2 → ∞) and (b)

T2 = 1 fs. Notably, the obtained quantity mimics key aspects of the HHG

spectra, displaying a plateau region extending from the lowest to the

maximum energy band gap, followed by a sharp cutoff. In both cases,

the interband component prevails over the intraband one in the non-

perturbative (plateau) region. Decreased dephasing values result in better

resolved peaks and reduced overall harmonic intensities.

7.3.2.1 An Extension to the Many-Electron Regime

It is worth noting that our analysis revolves around the single-electron

level. Nonetheless, in a semiconductor’s ground state, the valence band
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is typically fully occupied, forming what is known as a Fermi sea.

Utilizing the semiconductor Bloch equations holds a significant advantage

in this scenario, as it inherently incorporates the typically weak many-

electron interactions through effective couplings, such as, for instance,

dephasing. Therefore, within this framework, each electron can be treated

independently, possessing a distinct initial crystal momentum K spanning

the entire Brillouin zone. Consequently, extending Eq. (7.78) to a many-

body formulation, we have

|Φv(t)〉 ≈ D̂
(

Nz

∫
dKχv(K, t, t0)

) qc⊗

q=1

|0q〉,

= D̂(χ̄v(t, t0)
) qc⊗

q=1

|0q〉, (7.79)

where Nz denotes the number of Brillouin zones excited by the laser field.

In our numerical analysis, we employed Nz within the range 106 − 107,

a value subject to variation based on distinct experimental conditions.

These conditions involve parameters like the laser beam width, alignment

of the crystal lattice concerning the field’s polarization, and, in cases where

the HHG process occurs during transmission, the sample’s width. Such

variations can significantly impact the specific value of Nz.

7.3.2.2 Conditioning on HHG and Its Consequences

The state presented in Eq. (7.79) corresponds to a classical state. For

instance, if one computes the Wigner function of this state — regardless

of the chosen harmonic mode — would yield a Gaussian distribution.

However, additional operations can be applied to this state to generate

non-classical states. In experimental setups [11, 78] extended to solid-state

systems [79], the creation of non-classical states of light involves correlation

measurements between the different harmonic modes and part of the input

fundamental mode. Mathematically, this operation focuses on events where

at least one photon is generated in some harmonic mode q 
= 1, while

considering the correlations that emerge with the fundamental mode. This

can be formulated as the projective operation [18, 19]

P̂cond = �−
qc⊗

q=1

|0q〉〈0q|, (7.80)

which we shall refer to hereafter as the conditioning on HHG operation.

Applying this operator to the state in Eq. (7.79) leads, up to a normalization
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factor, to

∣
∣Φ̄v(t)

〉
=

qc⊗

q=1

|χ̄(q)
v (t, t0)〉 − ξIRξUV

qc⊗

q=1

|0q〉, (7.81)

where ξIR ≡ 〈0q|χ̄(q=1)
v (t, t0)〉 and ξUV ≡

∏qc
q=2〈0q|χ̄(q)

v (t, t0)〉. This state

corresponds to a massively entangled state, where all the harmonic modes

that get excited during the HHG process become entangled [19]. However,

thus far, the existing experimental implementations focus only on the

infrared mode by measuring the intensity of the generated harmonics

[11–13,78]. In mathematical terms, this operation corresponds to projecting

the conditioned state in Eq. (7.81) with respect to
⊗qc

q=2|χ̄(q)
v (t, t0)〉. This

actually leads to
∣
∣Φ̄v,IR(t)

〉
= |χ̄(q=1)

v (t, t0)〉 − ξIR|ξUV|2 |0q=1〉, (7.82)

which is a superposition between two different coherent states.

In Fig. 7.6, we compute the Wigner function of the state in Eq. (7.82)

for the case where ZnO is excited with a linearly polarized laser field along

Fig. 7.6 Wigner functions of the state in Eq. (7.82) under various conditions. Each
row represents different dephasing times, with the first two columns highlighting the
separate contributions of intraband and interband effects (by intentionally disabling the
other). The last column displays the combined contribution of both effects. The material
analyzed is ZnO, excited with a linearly polarized laser field along the Γ − A direction,
exciting a total of Nz = 1.6 × 107 Brillouin zones. The applied laser field has λL =
3.25 μm, a field strength of 0.5V/Å, and a duration of Δt ≈ 96 fs (9 optical cycles).
Adapted with permission from [32].
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the Γ − A direction which excites a total of Nz = 1.6 × 107 Brillouin

zones. We consider the applied laser field to have λL = 3.25μm, a field

strength of 0.5 V/Å and a duration of Δt ≈ 96 fs, corresponding to 9

optical cycles. In the first row, we show an ideal scenario without the

introduction of dephasing, while in the second row a dephasing time

T2 = 1 fs has been set. On the other hand, each column corresponds to

different contributions: intraband, interband and the combination of both,

from left to right respectively. As observed, these results show that: (1)

reduced values of T2 lead to more unbalanced coherent state superpositions,

yielding less homogeneous Wigner functions; and (2) that intraband effects

seem to be dominant in dictating the shape of the final Wigner function.

This can be understood by considering that a smaller dephasing time

leads the electron to spend more time in the valence band, consequently

increasing the contribution from intraband effects compared to interband

effects.

Contrasting behaviors with respect to those found for the Wigner

function are observed for the amount of entanglement between the infrared

mode and the other harmonics, as shown in Fig. 7.7. The degree of

entanglement in these scenarios is contingent upon the radiation generated

in the harmonic modes, where the perturbative (plateau) region is primarily

influenced by interband effects, as depicted in panel (a). In this case,

interband effects dominate over intraband ones. Conversely, as shown

in panel (b), the presence of dephasing effects significantly impacts the

overall entanglement. Specifically, when considering T2 = 1 fs, instead of no

(a) (b)

Fig. 7.7 The degree of entanglement between the fundamental mode and the qth
harmonic mode is plotted against the harmonic order. Panel (a) demonstrates the distinct
impacts of interband and intraband effects individually, along with their combined effect.
Panel (b) showcases the effect of dephasing on this measure of entanglement. Identical
excitation conditions to those in Fig. 7.6 have been applied.
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dephasing effects, we observe a reduction of approximately nine orders of

magnitude in these entanglement values.

7.3.3 Wannier-Bloch Picture

The use of a discrete basis set, such as the Wannier states, in the

quantum optical analysis of HHG processes in solids provides a more

manageable framework for exploring the entanglement between light and

matter. Consequently, in this section, we aim to address the solution to

the Schrödinger equation presented in Eq. (7.9) by employing a hybrid

Wannier-Bloch basis representation akin to the methodology outlined in

Section 7.2.2. To achieve this, we formulate the Schrödinger equation as

i�
∂ |Ψ(t)〉
∂t

=
[
Ĥcr + er̂Ê(t) + Ĥfield

]
, (7.83)

where, unlike Eq. (7.9), here we do not explicitly differentiate between the

intraband and interband components of the position operator. For the sake

of simplicity, adhering to a single-active electron description similar to that

of Section 7.2.2, we represent their initial state as

|Ψ(t0)〉 = |wj0,v〉 ⊗ |αL〉
qc⊗

q=2

|0q〉, (7.84)

where the single-active electron initially occupies the j0th Wannier site.

By applying similar unitary transformations as conducted in Sec-

tion 7.3.2, excluding eie(Âcl(t)+Â(t))r̂i,tra/�, we can rewrite Eq. (7.83) as

follows

i�
∂|Ψ̃′(t)〉
∂t

= er̂(t)Ê(t)|Ψ̃′(t)〉, (7.85)

where r̂(t) ≡ Û †sc(t)ˆ̃rÛsc(t). This is the pivotal point where the main

distinction between the two approaches becomes evident. Here, the identity

in the Wannier-Bloch approximation is introduced, namely

� =
∑

j

|wj,v〉〈wj,v|+
∫

dk |φk,c〉〈φk,c|, (7.86)

which inputted in Eq. (7.85) leads to

i�
∂|Ψ̃′(t)〉
∂t

= e
∑

j

r̂(t)Ê(t) 〈wj,v|Ψ̃′(t)〉 |wj,v〉

+ e

∫
dk r̂(t)Ê(t) 〈φk,c|Ψ̃′(t)〉 |φk,c〉. (7.87)
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In the following, we perform a similar assumption to that at the

conclusion of the Bloch basis analysis in Section 7.3.2. This assumption

involves considering the probability of residing in the conduction band to be

extremely minimal at all times. We anticipate this approximation to be valid

within the realm of weak depletion of the valence band, a scenario aligning

with the frequencies and field strengths employed here [38]. Consequently,

we approximate Eq. (7.54) as

i�
∂|Ψ̃′(t)〉
∂t

≈ e
∑

j

r̂(t)Ê(t) 〈wj,v|Ψ̃′(t)〉 |wj,v〉, (7.88)

and by projecting with respect to the set of Wannier states, we arrive at

the following system of differential equations

i�
∂ |Φi(t)〉

∂t
=
∑

j

Mi,j(t)Ê(t) |Φj(t)〉, ∀j ∈�, (7.89)

where we have defined |Φi(t)〉 ≡ 〈wi,v|Ψ̃(t)〉 and Mi,j(t) ≡ e 〈wi,v| r̂(t)
|wj,v〉. It is worth noting that Mi,j(t) is a non-diagonal matrix since an

electron initially on site i can end up in site j either through an intra-

band transition, described by off-diagonal elements, or via an excitation-

recombination mechanism, mainly described by the diagonal elements.

In the following, we investigate HHG processes under the regime of

weak electron delocalization, that is, |Mi,j(t)| � |Mi,i(t)| with i 
= j. For

simplicity, we solely consider nearest neighbor contributions, restricting our

focus to the non-diagonal elements of Mi,j(t) for which j = i± 1. Treating

these as a perturbation parameter, we expand our state |Φi(t)〉 up to first

order as

|Φi(t)〉 ≈ |Φ(0)
i (t)〉 + |Φ(1)

i (t)〉, (7.90)

such that the zeroth-order term satisfies

i�
d|Φ(0)

i (t)〉
dt

= Mi,i(t)Ê(t)|Φ(0)
i (t)〉, (7.91)

and whose solution can be written as

|Φ(0)
i (t)〉 = D̂(χi,i(t, t0)

)|Φ(0)
i (t0)〉

≡
∏

q

eiϕ
(q)
i,i (t,t0)D̂q

(
χ
(q)
i,i (t, t0)

)|Φ(0)
i (t0)〉, (7.92)
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where D̂q(α) = exp
[
αâ†q − α∗âq

]
is the displacement operator acting on

mode q, ϕ
(q)
i,i (t) is a prefactor arising from applying the Baker–Campbell–

Hausdorff relation, and χ
(q)
i,i (t, t0) is a coherent state amplitude given by

χ
(q)
i,i (t, t0) = −1

�

∫ t

t0

dτeiωqτg(ωq)Mi,i(τ). (7.93)

It is important to note that, while we have explicitly depicted the

dependence of χ
(q)
i,i (t, t0) on the Wannier site, specifically the ith site,

the dynamics across all sites are equivalent. Consequently, they result in

identical HHG spectra, enabling us to disregard the i index in χ
(q)
i,i (t, t0).

Nevertheless, for the sake of completeness, we maintain this notation in the

subsequent discussion.

Regarding the first-order term we get the following differential equation

i�
d|Φ(1)

i (t)〉
dt

= Mi,i(t) · Ê(t)|Φ(1)
i (t)〉

+
∑

j∈{i±1}
Mi,j(t)Ê(t)|Φ(0)

j (t)〉, (7.94)

whose solution can be generally written as

|Φ(1)
i (t)〉 = D̂(χi,i(t, t0)

)|Φ(1)
i (t0)〉

− i

�

∑

j∈{i±1}

∫ t

t0

dt′D̂(χi,i(t, t′)
)
Mi,j(t

′)Ê(t′)

× D̂(χj,j(t′, t0)
)|Φ(0)

j (t0)〉. (7.95)

Introducing the initial conditions at this point, we observe two distinct

contributions based on the final site, j, where the electron ends up:

• If the electron concludes its dynamics in the initial Wannier site, j0, then

the final state is given by

|Φj0(t)〉 = D̂(χi,i(t, t0)
)⊗

q

|0q〉; (7.96)

• Conversely, if the electron concludes its dynamics in a different Wannier

site from where it started, j, the final state becomes

|Φj(t)〉 = − i
�

∫ t

t0

dt′D̂(χj,j(t, t′)
)
Mj,j0(t′) · Ê(t′)

× D̂(χj0,j0(t′, t0)
)⊗

q

|0q〉. (7.97)
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It is worth noting that, by taking into account that χ
(q)
i,i (t) = χ

(q)
j,j (t) =

χq(t), we can rewrite Eq. (7.97) as

|Φj(t)〉 = − i
�
eiϕ(t)D̂(χ(t, t0)

)

×
∫ t

t0

dt′e−iθ(t
′)D̂†(χ(t′, t0)

)

× (Mj,j0(t′)Ê(t′)
)D̂(χ(t′, t0)

)⊗

q=1

|0q〉, (7.98)

where we have defined θ(t′) ≡ ∑
q Im

{
χq(t, t0)χ∗q(t

′, t0)
}

. Furthermore,

from numerical analysis, we find that the integral above differ in the fifth

significant decimal when j = ±1. Hence, in the following we approximate

|Φ+1(t)〉 ≈ |Φ−1(t)〉 ≡ |ΦNN(t)〉.
For a one-dimensional lattice, the joint state of the system can be written

as

|Ψ̃′(t)〉 = |wj0,v〉 ⊗ |Φj0(t)〉+
√

2 |wNN,v〉 ⊗ |ΦNN(t)〉, (7.99)

where we defined |wNN,v〉 = (1/
√

2)(|wj0+1,v〉+ |wj0−1,v〉). If we denote the

coordinate number of the lattice by fc (i.e., fc = 2d in hypercubic lattices

in d-dimensions, fc = 3 for honeycomb lattice in 2D, fc = 6 for triangular

lattice in 2D), we can provide a generalization of our state to arbitrary

dimensions

|Ψ̃′(t)〉 = |wj0,v〉 ⊗ |Φj0(t)〉+
√
fc |wNN,v〉 ⊗ |ΦNN(t)〉, (7.100)

where now |wNN,v〉 = (1/
√
fc)(

∑
j∈NN |wj0+j,v〉).

7.3.3.1 An Extension to the Many-Electron Regime

Although until now we have worked under the single-active electron

approximation, as mentioned in the Bloch-Bloch analysis of Sec. 7.3.2, the

initial state of the system corresponds to a completely filled Fermi sea, i.e.,

all Wannier sites are occupied. Given that electron-electron correlations

are weak in typical semiconductor materials, we can consequently treat

the interaction of all electrons with the laser field as independent. Thus,

by introducing the same unitary transformations as for the single-electron

analysis, and neglecting the contributions of the conduction band, the

Schrödinger equation reads

i�
d|Ψ̃′(t)〉

dt
≈ e

∑

m

ˆ̃r(t)Ê(t)
〈
wm,v|Ψ̃′(t)

〉 |wm,v〉, (7.101)
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where |wm,v〉 ≡ |wm0,v〉 ⊗ |wm1,v〉 ⊗ · · · ⊗ |wmNe ,v〉; and ˆ̃R =
∑Ne−1
j=0 r̂i,j ,

with Ne being the number of electrons contributing in a phase-matched way

to the HHG process, and ri,j the position operator along direction i acting

on the jth electron.

Similarly to before, we assume the regime of weak delocalization,

ensuring the single-electron wavepacket does not significantly spread across

different Wannier sites. Consequently, we separate the contribution of r̃(t)

into diagonal and off-diagonal elements, allowing us to treat the latter using

perturbation theory. Thus, by projecting Eq. (7.101) with respect to |wi,v〉,
we obtain

i�
d |Φi(t)〉

dt
= e

∑

m

〈wi,v|r̃(t)|wm,v〉 Ê(t) |Φm(t)〉, (7.102)

where we have defined |Φi(t)〉 =
〈
wi,v|ψ̃(t)

〉
, and where the matrix elements

of r̃(t) are given by

〈wn,v|r̃(t)|wm,v〉 =

Ne−1∑

j=0

〈
wnj ,v

∣
∣r̂i,j

∣
∣wmj ,v

〉 ∏

l∈Oj

δnl,ml
, (7.103)

wherein the previous expression Oj := {l : l ∈ �− {j}}.
Up to the first order in perturbation theory, the equations we get are

identical to the ones found in the single-electron regime. Thus, taking into

account the initial conditions, we find two kinds of contributions depending

on the final sites j where the electrons end up in:

• If the electrons end up in the initial Wannier sites where they were

initially located, then the final state reads

|Φi(t)〉 = D̂(Neχ(t, t0)
)⊗

q

|0q〉; (7.104)

• If one of the electrons ends up in a different Wannier site j from which

it initially started the dynamics, then the final state reads

|Φi(t)〉 = − i
�
D̂(Neχ(t, t0)

)

×
∫ t

t0

dt′e−iθ(t,t
′,t0)Min,in,0(t′)

× D̂†(Neχ(t′, t0)
)
Ê(t′)D̂(Neχ(t′, t0)

)

⊗

q

|0q〉, (7.105)
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where we have considered that one of the electrons has transitioned from its

initial site in,0 to site in. It is worth noting that the first-order perturbation

theory term describes events where only one of the electrons ends up in a

different Wannier site from which it initially started the dynamics. In order

to consider events where we find n transitions, we then have to perform a

perturbation theory expansion up to the nth order term. However, in the

many-electron scenario, we restrict ourselves to solids for which the HHG

process is highly localized, as it happens for instance with solid argon [80],

or for specific crystal directions of certain solids like ZnO (see Fig. 7.2).

With all this, we can extend Eq. (7.100) to the many-electron scenario

as

|Ψ̃′(t)〉 = |wj0,v〉 ⊗ |Φj0(t)〉+
√
fcNe|wNN,v〉 ⊗ |ΦNN(t)〉, (7.106)

where it is worth noting that, like in Eq. (7.75), we get an entangled

state between light and matter. However, the main advantage in this

case is that we have characterized the electronic states through a discrete

basis set. This allows us to perform a simple light-matter entanglement

characterization, assessing whether the approximations performed in the

many-body analysis, which essentially neglect the entanglement between

light and matter, hold valid for the considered material.

7.3.3.2 Conditioning on HHG and Its Consequences

To compare the implications of the light-matter entanglement outlined in

Eq. (7.106) against the findings in Section 7.3.2, we consider here the use

of the conditioning on HHG operation presented in Eq. (7.80). By applying

this operation to Eq. (7.106) and subsequently projecting it onto the

coherent state |γ〉 ≡⊗q≥2 |χq(t, t0)〉, representing the measured harmonics,

we obtain

|Ψcond(t)〉 = 〈γ|Ψ(t)〉 − ξ(γ, t) |αL〉, (7.107)

with ξ(γ, t) = 〈α, 0HH|Ψ(t)〉 〈γ|0HH〉.
We begin the comparison by first computing the Wigner function of

the infrared field mode. However, unlike the Bloch-basis analysis, in this

scenario we include in our state the possibility of the electrons ending up in a

valence band state different from the initial one. Therefore, assuming a lack

of knowledge about the final state with which the electron has recombined,

we can express the quantum optical state of the system in terms of the
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following density matrix

ρ̂field(t) = trelec(|Ψcond(t)〉〈Ψcond(t)|), (7.108)

where we have essentially traced out the electronic degrees of freedom.

When exploring the interaction between ZnO and a linearly polarized

electric field along the Γ−A crystal direction, featuring a peak field strength

E0 ≈ 0.2 V/Å, λL = 3.25μm and duration Δt ≈ 40 fs, we arrive at the

Wigner functions shown in Fig. 7.8. Each panel corresponds to a different

number of electrons Ne, specifically Ne = 1×107, 1×108, 5×108 and 1×109

from panels (a) to (d), respectively. Notably, these results do not account

for dephasing effects, yet exhibit a strong resemblance to those illustrated

in Fig. 7.6 (c) from the Bloch-based analysis, where Nz = 1.6× 107.

Furthermore, as can be seen here, explicitly increasing the number

of electrons contributing in a phase-matched way to the HHG process

leads to a Wigner distribution that shifts from a displaced Fock state

(a) (b)

(c) (d)

Fig. 7.8 Wigner function of the state in Eq. (7.108) when considering different numbers
of electrons independently contributing to the HHG process. Specifically, from (a) to (d),
the values Ne = 1× 107, 1× 108, 5× 108 and 1× 109 have been used. Here, we consider
the interaction of ZnO with a linearly polarized electric field along the Γ − A crystal
direction, with peak field strength E0 ≈ 0.2V/Å, λL = 3.25μm and duration Δt ≈ 40 fs
(≈4 optical cycles). Adapted with permission from https://arxiv.org/abs/2211.00033.
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(Fig. 7.8 (a)), to an unbalanced superposition between two close coherent

states (Fig. 7.8 (b) and (c)) until it reaches a regime where one of the

coherent states in the superposition dominates (Fig. 7.8 (d)). This behavior

bears resemblance to what is found for atomic HHG [11–13, 15], which is

a consequence of the natural localization of the HHG process in atomic

and molecular targets. However, and as mentioned earlier, in this case the

electron dynamics are different to the case of atoms, and they lead to non-

trivial consequences on the generated coherent state superpositions.

As was already stated, a main advantage of introducing a Wannier-based

analysis lies in the discreteness of the electronic basis set. This discretization

significantly simplifies the characterization of entanglement compared to

continuous-variable basis sets, as observed for the Bloch-based approach

outlined in Section 7.3.2. Moreover, working within the regime of weak

delocalization allows us to focus on nearest-neighbor interactions, further

streamlining the entanglement analysis. This particular simplification stems

from treating the electronic degrees of freedom in Eq. (7.106) as qubits.

Consequently, the entanglement entropy in Eq. (7.43) serves as a suitable

entanglement measure. Additionally, examining the fidelity of the state with

respect to the |wNN,v〉, offers insights into the likelihood of finding electrons

in their nearest neighbors. For a generic density matrix σ̂, this quantity can

be computed as follows

Fdel(σ̂) = trfield

(
〈wNN,v|σ̂|wNN,v〉

)
. (7.109)

In Fig. 7.9, we illustrate these two quantities for different lattice

geometries, and their dependency on the number of electrons Ne. More

specifically, panel (a) demonstrates the fidelity, while panel (b) showcases

the entanglement entropy. The dashed curves represent the state without

conditioning, i.e., when considering Eq. (7.106). On the other hand, the solid

curves depict the case with Eq. (7.107), where the conditioning on HHG

operation has been applied. Throughout both cases, the observed values of

these measures generally remain within the order of 10−6 at maximum. This

observation suggests that, under the considered excitation conditions, the

entanglement features are nearly negligible. This underscores the validity of

the approximations utilized in Section 7.3.2. Nevertheless, there is a notice-

able trend: the amount of entanglement tends to increase with the number

of electrons involved in the interaction region. However, for larger values of

Ne, introducing more than nearest neighbors might become necessary.

Despite the notably reduced values observed for the degree of entan-

glement and the fidelity in Fig. 7.9, several noteworthy features emerge.
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(a) (b)

Fig. 7.9 In (a), the fidelity measure outlined in Eq. (7.109) is plotted against the number
of electrons contributing independently to the HHG process. In (b), the entanglement
entropy is depicted instead. Dashed lines represent scenarios without conditioning on
HHG operation, while continuous curves signify cases where this conditioning has
been applied. Each color corresponds to a different coordinate number. The laser-solid
interaction conditions mirror those of Fig. 7.8. Adapted with permission from https://
arxiv.org/abs/2211.00033.

Firstly, for Ne � 2 × 108, both the fidelity and the entanglement after the

conditioning (solid curves) exhibit higher values compared to those before

the conditioning (dashed curves). This enhancement is primarily attributed

to |χ(t, t0)|, which remains a small quantity (∼10−2), allowing the condi-

tioning to accentuate the contributions from electron recombination in the

nearest neighbors. Consequently, this increase in fidelity is accompanied by

a growth in the value of S(ρ̂). Secondly, an intriguing observation occurs

around Ne � 2.5 × 108: an abrupt drop in S(ρ̂) after the conditioning,

which is absent for Fdel(ρ̂). This phenomenon stems from the cancellation of

quantum optical contributions arising from the |wNN,v〉 term in Eq. (7.107),

i.e., 〈γ|ΦNN(t)〉 − ξ(γ, t) |αL〉. As Ne increases, ξ(γ, t) diminishes with the

increment of |χ(t, t0)|, resulting in a minimal overlap with the initial state.

Consequently, in this regime where the conditioning on HHG operation

exhibits this minimal effect, Fdel(ρ̂) and S(ρ̂) for the state before and after

conditioning coincide. Furthermore, it is important to note that these two

quantities demonstrate a marginal increment with the coordinate number

fc, despite the modifications being far from noticeable.

7.4 Outlook

In this chapter, we have provided an in-depth study of strongly driven laser-

solid interactions from a quantum optical perspective. This analysis, focused
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on solids exhibiting minimal electron-electron correlations, produces out-

comes akin to those observed in atomic systems [15] and molecular setups

[21]. Rather than disheartening, these aligned findings serve as a catalyst

for transitioning from prevailing atomic-based experimental platforms

to solid-state counterparts. Notably, considering the diminutive sizes of

typical semiconductor samples [34, 47] — integral components in existing

technologies — the similarity in observed results following strong laser-

solid interactions suggests the feasibility of conducting these experiments

on a smaller scale. This marks the initial stride from fundamental physics

inquiries toward practical technological advancements.
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