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ABSTRACT
A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a
key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point
of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and
efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have
been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of
attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but
computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined
system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set
suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets
by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from
5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by
other authors.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0040879., s

I. INTRODUCTION

Attoscience is a rapidly developing area of research with oppor-
tunities of unprecedented applications in physics, chemistry, and

biology. In attoscience, the basic process consists of shining a short
(a few optical cycles long) pulse of near- or mid-infrared laser radi-
ation on a target, which can be an atom, a molecule, a biomolecule,
etc.1–3 The response of the target may result in high-harmonic
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generation (HHG)4–11 and, if the intensity of the pulse is high
enough, in electron detachment and formation of atomic or molecu-
lar ions.12–30 The high harmonics are generated as a part of a macro-
scopic phase-matched process31 and manifest themselves as extreme
ultraviolet (XUV) or x-ray pulses at frequencies given by integer
multiples of the driving pulse frequency.32–36 These pulses, although
not very intense, have attosecond-scale duration and exhibit a very
high spatial and temporal coherence,37–40 so they allow for imaging
of the structure and dynamics of matter in their natural length and
time scales.

The HHG spectrum is characterized by its distinctive shape.
For a few lowest harmonic peaks, the intensity decreases with the
harmonic order according to lowest-order perturbation theory.41

Afterward, a long plateau is observed in which the harmonic peaks
are of a similar height. This plateau terminates with a sharp cut-
off, beyond which the emission decays exponentially. This shape
is usually explained using a semiclassical picture, encoded in the
famous three-step model of HHG.7–9 In the first step, the electron
escapes the potential well of the nucleus via tunneling ionization. In
the second step, it is further accelerated in the laser field until the
direction of the field changes. Finally, in the third step, it is reac-
celerated toward the residual ion and recombines with it, which is
accompanied by an emission of a high-energy photon. The maxi-
mum energy of the emitted photons, and thus the position of the
harmonic cutoff, depends on the ponderomotive energy Up and on
the ionization potential Ip via the relation Ecutoff = Ip + 3.17Up. For
inversion-symmetric media, such as atoms in the gas phase, only
peaks at odd harmonics are present in the spectrum due to symmetry
constraints.

Theoretical description of the HHG spectra requires the knowl-
edge of the time evolution of the dipole moment in the non-
perturbative regime. This is a formidable task, since, in turn, it
requires solving the time-dependent Schrödinger equation (TDSE).
The latter problem is usually treated in two ways: either by
diverse analytical or semi-analytical methods, such as the proba-
bly most famous strong field approximation (SFA),42 or by using
a variety of purely numerical methods.43 Among the former, one
of the most predominant is the previously mentioned three-step
model by Lewenstein et al.7–9,42 It is able to describe a broad
range of one- and two-electron processes, including the HHG,
the above-threshold, tunneling and non-sequential ionization, and
the electron rescattering, but the results it provides are mostly
qualitative. In order to obtain more quantitative insight, sev-
eral more accurate alternatives have been proposed in the lit-
erature, such as the R-matrix theory44 and the Floquet state
analysis.45–48

Regarding the numerical techniques for solving the TDSE,
recent developments in the propagation of the wavefunction in real-
time on a finite spatial grid have proven extremely useful for a
very precise description and understanding of the electron dynamics
during intense field processes.49–63 However, this is applicable
mostly to one-electron systems, such as the hydrogen-like ions
and the H+

2 ion, since full-dimensional numerical integration of
TDSE containing an explicit two-electron wavefunction remains
challenging.64–71 Extending this approach to more complex sys-
tems is barely feasible, as it requires huge amounts of memory
and computational time and must rely on using various approx-
imations, such as the most commonly used single-active-electron

approximation6,72–83 or restricted dimensionality models,84–95

recently extended to the three-electron case.96,97 Such techniques
may be useful for some general insight into the electron dynam-
ics but fail to capture more subtle effect occurring in the HHG,
as pointed out by Gordon et al.98 Due to these limitations, novel
methods that can describe many-electron systems are still in high
demand.

A kind of a “third way” to describe the attosecond processes
may be to apply the methods widely used in quantum chemistry that
employ the expansion of the wavefunction of the examined system
in a basis set of predefined functions, most commonly the Gaussian-
type functions or Gaussian-type orbitals (GTOs). Currently, for the
majority of the widely used quantum chemistry methods, their real-
time time-dependent counterparts have been developed and applied
to the real-time propagation, including time-dependent multi-
configurational Hartree–Fock,99–104 time-dependent configuration
interaction (TDCI),105–111 time-dependent density functional the-
ory,104,112–115 algebraic diagrammatic construction,116,117 and time-
dependent coupled cluster.118–120 This so-called basis set approach
is much less limited by the number of electrons and atoms than the
grid-based one. It is also computationally less expensive, since most
of the necessary calculations can be performed analytically. How-
ever, the biggest shortcoming of this approach is the deficiency of
basis sets to describe the motion of electrons in high-energy fields.
Since most of the quantum chemical studies are focused on deter-
mining the properties of atoms and molecules in their ground states,
a great majority of the existing atomic basis sets, such as Pople, Dun-
ning, or Ahlrichs basis sets, have been obtained by minimizing the
atomic ground state energies at a suitable level of theory (usually, the
Hartree–Fock or a simple post-HF method).121 It is thus natural that
these basis sets approximate the lowest-energy states much more
accurately compared to the higher excited states. When subjected
to an intense laser field, the atoms or molecules usually become
excited to states near or above the ionization threshold. What we
need, then, are basis sets that are able to describe a sufficiently large
number of excited and continuum atomic or molecular states, with
a precision comparable to that of the description of the ground
state.

It is quite obvious that the construction of a Gaussian basis set
that correctly mimics the Rydberg continuum orbitals is far from
trivial, mostly due to their highly oscillatory behavior. One of the
very first attempts was made by Kaufman et al. in 1989.122 They
presented a method for constructing a set of Gaussian-type orbitals
(GTOs),

χGTO
lm;α (r, θ,ϕ) =

¿
ÁÁÀ2(2α)l+3/2

Γ(l + 3
2)

rl exp(−αr2)Ylm(θ,ϕ), (1)

with the exponents α fitted to maximize their overlaps with a series
of the so-called Slater-type orbitals (STOs),

χSTO
nlm;ζ(r, θ,ϕ) = (2ζ)n+1/2

√
Γ(2n + 1)

rn−1 exp(−ζr)Ylm(θ,ϕ), (2)
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with a constant exponent ζ and a variable positive integer principal
quantum number n [Y lm(θ, ϕ) are the real spherical harmonics]. In
principle, the idea behind this is highly appealing. STOs constitute a
complete basis set in the Hilbert space (as opposed to the hydrogenic
orbitals), making possible the description of the electronic contin-
uum without the need to use any non-square-integrable functions.
They also possess some properties particularly useful from the per-
spective of real-time propagation: their radial functions are identical
for all angular momenta l and they have an expectation value of r
given by

⟨χSTO
nlm;ζ ∣r∣χSTO

nlm;ζ⟩ =
2n + 1

2ζ
. (3)

Since in the real-time-dependent methods, the wavefunction is most
often propagated in a finite region of space (usually accompanied
by some kind of absorbing boundary conditions), one can estimate
a priori how many STO shells are needed in order to describe the
wavefunction up to the boundaries of this region. On the other
hand, due to their exponential character, STOs lack some features
unique to the Gaussian-type functions, such as an efficient evalua-
tion of multicenter integrals. In their paper, Kaufmann et al. have
shown that their functions (referred to as the Kaufmann functions
or K functions further in the text) are able to generate a discretized
spectrum of the continuum eigenfunctions and imitate the Coulomb
wave functions up to considerably long distances away from the
nuclei.122

Unfortunately, the K functions also possess some major draw-
backs. First, since each STO is described with a single GTO, the
size of the basis set scales linearly with the number of STOs to be
reproduced. Moreover, the high-n STOs are approximated less accu-
rately compared to the low-n ones. Finally, the STOs form a non-
orthogonal basis set, and the overlap integral between two adjacent
STOs approaches unity with the increase in n. It therefore follows
that for large n, the values of the exponents of the K functions also
become closer to each other, creating a risk of linear dependen-
cies appearing in the basis set, which may jeopardize the numerical
stability of the calculations.

The disadvantages listed above make the Kaufmann basis
sets rather ineffective for the description of states close to or
beyond the ionization threshold, the description of which may
require including STOs with very high principal quantum numbers.
Therefore, their applicability in attoscience is limited to simulat-
ing atoms and molecules in laser fields of relatively low intensi-
ties. Due to the same reason, the K functions may be inefficient
for the description of heavier elements. Since the STO’s principal
quantum number can be associated with the atomic shell num-
ber, for atoms with a large number of occupied shells, it may
turn out that the linear dependencies and fitting inaccuracies pre-
vent one from representing more than a few lowest excited states
accurately.

It is worth noting that after the paper by Kaufmann et al.,
several attempts to create Gaussian basis sets suitable for the
description of the excited and continuum states have appeared.
Nestmann and Peyerimhoff reported fitting linear combinations of
GTOs to spherical Bessel functions for the purpose of the electron–
molecule scattering calculations.123 Their work was later extended

to the Coulomb wave functions by Faure et al.124 Moiseyev and
co-workers used Gaussian-type and Hylleraas-type functions to
describe the high harmonic generation in the helium atom in long
laser pulses using the Floquet approach.46,48,125 Some more elaborate
approaches, such as the B-spline basis sets or combinations of Gaus-
sians and grid-based methods, have also been employed with moder-
ate success in describing both ionization rates and HHG.126–131 Fiori
and Miraglia132 and later Szczygieł et al.133 explored the approx-
imation of the continuum wave functions of the hydrogen atom
with plane wave functions multiplied by the Gaussian-type orbitals
(GTOPWs or London orbitals), which can mimic the oscillatory
behavior of continuum orbitals. Such basis sets were able to very
accurately reproduce the measured ionization spectra of the hydro-
gen and helium atoms as well as molecular-frame photoelectron
angular distributions for the hydrogen molecule132,133 but failed
to exceed beyond the perturbative regime. Rowan et al. showed
that only their counterparts with time-dependent parameters are
able to reasonably describe the wavefunction propagation in laser
fields.134

Recently, Coccia and co-workers have decided to revisit and
extend the work of Kaufmann et al. with the primary goal of con-
structing basis sets for an accurate description of atomic and molec-
ular HHG spectra.131,135–139 They combined the K functions with
augmented Dunning basis sets140 containing a very large number
of diffuse functions. Their method proved useful for the descrip-
tion of HHG at intensities below the barrier-suppression ionization
threshold. However, the limitations stemming from the use of the
K functions, such as near-linear dependencies within the basis set,
could not be avoided.

In this paper, we introduce a novel systematic scheme for
constructing finite Gaussian basis sets for an optimal represen-
tation of both bound and continuum Hamiltonian eigenstates,
designed particularly to enable efficient time-dependent calcula-
tions of many-electron and multicenter systems. Recalling the ben-
efits of the Kaufmann approach, such as simplicity and physical
interpretability of the K functions, we determine a series of Gaus-
sian functions to best reproduce a given subset of STOs. How-
ever, our approach is somewhat different. Instead of optimizing a
single GTO for each consecutive STO, we optimize all GTOs at
the same time so that every STO from a predefined range may
be approximated by their linear combination with a roughly equal
accuracy.

This paper is organized as follows: In Sec. II, we briefly dis-
cuss the theory behind the basis set approach to real-time propa-
gation. The procedure used to obtain optimal basis sets is described
in Sec. III, while the computational details of time-dependent calcu-
lations are presented in Sec. IV. Although the basis sets designed
by us are to be used eventually for simulations of many-electron
systems, we optimize them by performing time-dependent con-
figuration interaction (TDCI) calculations of the hydrogen atom
in intense laser fields, as it is an example of a system for which
a reliable and accurate numerical (grid-based) reference is easily
obtainable. The results of the simulations are presented and dis-
cussed in Sec. V, as well as compared with the results obtained
using basis sets composed of the K functions. We also present
some preliminary results for the helium atom as a simplest exam-
ple of a many-electron system. Finally, in Sec. VI, we conclude our
work.
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II. OUTLINE OF THE THEORY
As stated in Sec. I, the main goal of the real-time propagation is

to solve the time-dependent Schrödinger equation,

i
∂

∂t
∣Ψ(r, t)⟩ = Ĥ(t)∣Ψ(r, t)⟩, (4)

where both the Hamiltonian Ĥ(t) and the electronic wavefunction
∣Ψ(r, t)⟩ depend explicitly on time. In most numerical approaches,
it is assumed that the total evolution time can be discretized, i.e.,
divided into a large number of small yet finite time steps Δt during
which the time-dependency of the Hamiltonian can be ignored, and
the formula for a finite difference propagator is introduced,

∣Ψ(r, t + Δt)⟩ = U(t + Δt, t)∣Ψ(r, t)⟩, (5a)

U(t + Δt, t) = exp(−iΔtH(t + Δt/2)). (5b)

The fractional time step was introduced by using the midpoint
rule when approximating the integral of the Hamiltonian from
t to t + Δt, which improves the stability of the algorithm and reduces
the error. The length of a single time step must be chosen carefully,
as the proper choice strongly depends on the rate of change of the
Hamiltonian and therefore on the frequency of the laser field ω. In
our calculations, we have assured that Δt ≪ 2π/ω and checked the
convergence with respect to Δt.

In most cases, the Hamiltonian can be expressed as a sum of
a time-independent part H0, describing the unperturbed atom or
molecule, and a time-dependent light–matter interaction operator
V(t), Ĥ(t) = Ĥ0 + V̂(t). In the TDCI formalism, we expand the
time-dependent wavefunction as the combination of ground and
excited states of the system, obtained through diagonalization of the
time-independent Hamiltonian matrix in the basis set of choice,

∣Ψ(r, t)⟩ = ∑
n≥1

cn(t)∣ψn(r)⟩. (6)

From now on, the position dependence of states will be omitted as
obvious. We are thus able to represent the wavefunction as a column
matrix c(t) of the time-dependent coefficients cn(t) and reformulate
the propagation equation (5) as a matrix equation

c(t + Δt) = exp(−iΔt[H0 + V(t + Δt/2)])c(t) (7)

with matrix elements (H0)ij = ⟨ψi∣Ĥ0∣ψj⟩ and (V(t))ij
= ⟨ψi∣ ˆV(t)∣ψj⟩. It is also worth noting that in the case of one elec-
tron systems, such as the hydrogen atom, the states |ψn⟩ reduce to
linear combinations of basis functions, χk|ψn⟩ =∑k≥1ckχk.

The two key quantities obtained from the real-time propagation
are the HHG spectrum and the ionization probability. In this work,
the former is calculated in the dipole form as the squared modulus
of the Fourier transform of the dipole moment expectation value,

IHHG(ω) = ∣
1

tf − ti ∫
tf

ti
⟨Ψ(r, t)∣d̂∣Ψ(r, t)⟩eiωtdt∣

2

, (8a)

⟨Ψ(r, t)∣d̂∣Ψ(r, t)⟩ = ∑
i≥1
∑
j≥1
[ci(t)]†cj(t)⟨ψi∣d̂∣ψj⟩, (8b)

where we integrate over the total propagation time. We prefer to
use the dipole form instead of the, also frequently used, accelera-
tion form. This is because the dipole acceleration can be computed
analytically at each time step only using the Ehrenfest theorem,
which holds true only for exact wavefunctions. As this paper focuses
on comparing basis sets, which provide different levels of approx-
imation to the exact hydrogen wavefunction, this might be source
errors in the comparison. In our calculations, we implement a com-
plex absorbing potential (CAP), the construction and properties of
which will be elaborated in Sec. IV. Its presence causes the norm
of the excited wavefunction to decrease over time, simulating the
ionization process, and thus allows for determining the ionization
probability W(t),

W(t) = 1 − ⟨Ψ(r, t)∣Ψ(r, t)⟩. (9)

III. BASIS SETS
Given the advantages of the Slater-type orbitals set out in Sec. I,

we attempt to find a set of Gaussian-type orbitals able to repro-
duce a given number of STO shells. However, in order to avoid the
disadvantages of the Kaufmann method, our scheme will not rely
on approximating every STO separately. Instead, we will generate a
sequence of GTOs such that each STO from a predefined range can
be approximated by their linear combination with a roughly equal
precision. Concurrently, we also aim at keeping the basis set free
from the linear dependencies.

Similar to the Kaufmann approach, we choose the overlap inte-
gral as a criterion of similarity between an STO and a GTO, since
it can be associated with the L2(R3) metric in the Hilbert space. By
using the orthonormality property of the spherical harmonics, the
overlap between two normalized functions of the same l—a GTO
with exponent α and a STO with exponent ζ and a principal quan-
tum number n—can be evaluated analytically from the following
equation:

S(n, l, ζ,α) = 2−l/2−1/4 α−n/2−l/2−1 ζn+1/2

√
(2n)!

×
¿
ÁÁÀ αl+3/2

Γ(l + 3/2) Γ(n + l + 2)U(n + l + 2
2

,
1
2

,
ζ2

4α
), (10)

where U(a, b, z) is the confluent hypergeometric function of the
second kind.141 The STO exponent may be viewed as an effective
nuclear charge seen by the electron. Since in this paper, we focus on
the hydrogen atom, from now on, we set ζ = 1.

We start our procedure by defining the reference subset {S} of
Slater-type orbitals, which we aim at approximating by the Gaus-
sian functions. The choice of this subset depends both on the sys-
tem under consideration and the simulation conditions. Since the
basis set is meant to describe primarily the excited and continuum
states, a reasonable choice for the principal quantum number n of
the first STO in the subset {S} is the number corresponding to the
lowest unoccupied atomic shell. The upper bound of the reference
subset is less obvious to define, as it should correspond to the high-
est energy states achievable by the electron in the applied electric
field. An exemplary way to estimate it is to take the STO shell with
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⟨r⟩ equal to or slightly exceeding the electron’s quiver amplitude,
defined as E0/ω2, where E0 is the maximum amplitude of the electric
field.

Since the Gaussian exponents are real positive numbers, a
brute-force optimization of the whole basis set seems rather impossi-
ble. However, we can discretize the range of possible exponents and
construct the so-called sampling set, from which we will select func-
tions to be included in the final basis set. This discretization relies on
generating a large set of even-tempered Gaussian (ETG) functions
{G} (Gaussian functions with constant ratios between adjacent expo-
nents). The ETG functions possess a useful property of spanning
the Hilbert space evenly142 and are therefore able to approximate
any function with accuracy dependent solely on the ratio between
exponents. The optimal size and range of the sampling set will be
discussed later.

The selection of the exponents from the sampling set {G} is per-
formed separately for each angular momentum. For each l ranging
from l = 0 to l = Lmax, we calculate a S × G matrix of overlap inte-
grals between STOs from the reference subset {S} and GTOs from
the sampling set {G}. First, we need to reject GTOs that have no sig-
nificant contribution to the description of any STO. We accomplish
this by removing the GTOs for which the maximum component of
the overlap vector is smaller than the so-called overlap cutoff. Next,
we calculate the sums of the components of the remaining vectors
(their L1 norms), obtaining for each GTO a quantity that we will
refer to as the cumulative performance score,

CPSi =
S

∑
j=1
∣⟨χSTO

j ∣χGTO
i ⟩∣. (11)

The cumulative performance score may be seen as a measure of an
overall performance of a single GTO in the description of all the
STOs. The choice of L1 norm is based mostly on the intuitiveness
of the results because in this way, the cumulative performance score
can take on values from 0 (for functions that poorly approximate
the STOs or approximate only a few of them) to S (for functions that
are most essential for approximating a majority of STOs). Alterna-
tively, using the L2 norm or the L0 norm (measured as the num-
ber of components larger than a predefined threshold) may also be
considered.

Next, we start an iterative procedure of selecting GTOs based
on their cumulative performance score.

1. From the remaining GTOs, we choose the one with the highest
cumulative performance score and include it in the final basis
set.

2. Because the initial sampling set should be rather extensive in
order to approximate the continuous spectrum of exponents
as closely as possible, we usually encounter a large number
of GTOs, which overlap with the reference subset in a simi-
lar manner to the GTO chosen in step 1. In other words, their
overlap vectors are close due to similar values of the exponents.
The sampling set must be further depleted of these functions
before selecting the next GTO in order to keep the final basis
set free of linear dependencies. We achieve this by determin-
ing the so-called cosine distance between the overlap vectors
of the GTOs. The cosine distance between vectors A and B is
defined as

Dcos(A,B) = 1 − cos(A,B)

= 1 − A ⋅ B
∥A∥2∥B∥2

. (12)

Its value may range from 0 to 2; however, in our case, the max-
imum value is 1, since the overlap integrals are non-negative.
When the cosine distance is 1, the overlap vectors are orthog-
onal, meaning that the function described by the vector A
overlaps with different STOs than the function described by
the vector B. When the cosine distance equals 0, the over-
lap vectors are parallel (differing only by a proportionality
constant), meaning that both functions approximate the same
STOs, so one of the functions may be eliminated as redun-
dant. In our procedure, we first calculate the cosine distances
between the overlap vector corresponding to the function cho-
sen in step 1 and the overlap vectors of all the remaining
GTOs.

3. Next, we introduce the so-called cosine cutoff, a value that
determines the maximum acceptable similarity between two
overlap vectors (thereby also between two basis functions). The
GTOs for which the cosine distance calculated in step 2 is
smaller than the cosine cutoff are removed.

Steps 1–3 are repeated until all of the GTOs are either removed or
included to the final basis set.

Since the core element of our method is defining the range of
states that are energetically accessible by the electron, for a basis set
constructed according to the above scheme, we propose the name of
active range-optimized (ARO) basis set.

The most critical factor in constructing an optimal ARO basis
set is the proper choice of the sampling set, i.e., the range of the expo-
nents and the sampling density (the ratio between adjacent expo-
nents). If this range is too narrow or ill-placed, some of the STOs,
especially with the lowest or highest n, may not be described prop-
erly due to the lack of sufficiently diffuse or tight functions. Choosing
a range that is too broad should not affect the final outcome, since
any redundant functions will be removed anyway due to the overlap
cutoff condition, but it may unnecessarily extend the computational
time. Since in our scheme, each STO is approximated by a linear
combination of GTOs, some functions with relatively large and small
exponents may actually be beneficial for a more accurate description.
Therefore, a reasonable guess for the sampling set range should be
the range covering the exponents of the Kaufmann functions fitting
the same reference subset (for the hydrogen atom, approximately
from 10−4 to 100), but extended on both sides by one or two orders
of magnitude. The appropriateness of this choice can easily be ver-
ified by checking if at least a few of the functions are discarded due
to the overlap cutoff condition. As we mentioned in the step 2 of
the iterative procedure, the sampling density should be high enough
to provide convergence with respect to the number of functions in
the final ARO basis set and the values of the selected exponents. In
our calculations, about 10 000 ETG functions with exponents rang-
ing between 10−k and 10−k+1 usually proved sufficient to achieve this
convergence.

The overlap cutoff governs the number of “enhancing” func-
tions mentioned above, i.e., the tight and diffuse GTOs that usu-
ally do not have any major contribution to the description of STOs
but merely improve the GTO approximation. The proper choice of
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the overlap cutoff provides the optimal effective range of exponents
from which the functions are selected. Our calculations have shown
that the range of values between 0.1 and 0.2 is appropriate.

The cosine cutoff determines the overall number of functions
in the final basis set. As previously stated, it also serves as a tool
for reducing the linear dependencies in the basis set. It is impor-
tant to emphasize that these features are achieved not by limiting the
similarity of the Gaussian functions themselves, but by limiting the
similarity with which two GTOs describe the reference subset. This
unique property is the source of the characteristic structure of the
ARO basis sets. Any variation in the exponent of a Gaussian function
leads to changes in the overlap integrals and, therefore, to a change in
the orientation in the overlap vector by a certain angle. In our pro-
cedure, the cosine of this angle is compared to the cosine cutoff in
order to decide whether a certain function from the sampling set is
to be removed or kept for further selection. However, it is interesting
to note that the value of this angle depends not only on the variation
in the exponent but also on the values of the overlap vector compo-
nents. Functions that have a large contribution to the majority of the
reference subset usually correspond to overlap vectors with most of
the components significantly larger than zero. Therefore, a change
in an exponent, even a relatively small one, results in variation of
the majority of the overlap vector components. The combination
of small variations in a large number of components may already
suffice to fulfill the cosine cutoff condition. On the contrary, the
“enhancing” functions usually correspond to overlap vectors with
most of the components close to zero, and thus, a small variation in
the exponent changes only a few components of the overlap vector.
It is therefore clear that a much larger variation needs to be applied
in order to alter the orientation of the overlap vector by an angle
sufficient to fulfill the cosine cutoff condition. A direct consequence
of this fact is that in the ARO basis sets, the ratios between adja-
cent exponents are the largest for the tightest and diffuse functions.
This ensures the densest distribution of functions that play a key role
in approximating the reference subset, as compared to the “enhanc-
ing” functions. This feature distinguishes the ARO basis set from the
Kaufmann basis set, where the ratios between adjacent exponents
decrease with their values, as well as from the ETG basis sets, where
this ratio is constant for all adjacent functions.

IV. COMPUTATIONAL DETAILS
A. Simulation conditions

We performed a series of TDCI propagations of the hydro-
gen atom wavefunction in short (femtosecond-scale) pulses of an
intense linearly polarized laser field represented by an oscillating
electric field. The motion of the electron is considered in the Born–
Oppenheimer approximation, while the interaction between it and
the external field is treated in the dipole approximation. All cal-
culations are performed in the velocity gauge, as it requires lower
angular momenta included in the basis set for the results to con-
verge than in the length gauge.143 The interaction operator Vext(t),
coupling the electron and the electric field polarized along the z-
axis, reads Vext(t) = −iA(t) ∂

∂z in the velocity gauge, where A(t)
is the vector potential related to the field E(t) by the relation
E(t) = −∂tA(t). In our calculations, the vector potential corresponds
to a time-dependent electric field representing a laser pulse with a

sine-squared envelope,

E(t) = {E0 sin(ω0t) sin2(ω0t/2nc) if 0 ≤ t ≤ 2πnc/ω0,
0 otherwise,

(13)

where E0 is the field amplitude related to the laser peak intensity I0
by I0 = ϵ0cE2

0, ω0 is the carrier frequency, nc is the number of optical
cycles the pulse consists of, and 2πnc/ω0 is the total duration of the
pulse.

All calculations are performed for ω0 = 1.55 eV (λ = 800 nm),
corresponding to a Ti:sapphire laser, frequently used in the attosec-
ond experiments.1 The number of optical cycles is either 4 or 20
(corresponding to time intervals of ∼441.3 a.u. and 2206.6 a.u.). The
barrier-suppression ionization threshold of the hydrogen atom (the
intensity sufficient for the electron to classically overstep the poten-
tial barrier generated by the nucleus) is about 1.37 × 1014 W/cm2.
We examine four laser intensities: two below the ionization thresh-
old, 5 × 1013 W/cm2 and 1 × 1014 W/cm2, and two above it, 2 × 1014

W/cm2 and 5 × 1014 W/cm2.
In order to capture the ionization process, a complex absorb-

ing potential (CAP) of the form −iVCAP(r) is also included in the
time-dependent Hamiltonian. The structure of the applied CAP is
discussed below.

To sum up, the total expression for the time-dependent Hamil-
tonian, in atomic units, reads

H(r, t) = −1
2
∇2 − 1

r
− iA(t) ∂

∂z
− iVCAP(r), (14)

where r denotes the distance between the electron and the nucleus.

B. Basis set calculations
The basis set calculations are performed using three different

ARO basis sets, constructed according to the scheme presented in
Sec. III and fitted to reference subsets of STOs with principal quan-
tum numbers ranging from 2 to either 30, 60, or 90. Each basis set
includes functions with angular momenta from 0 (s-type orbitals) to
8 (l-type orbitals). The sampling set is the same for each basis set
and each angular momentum and comprises of 10 000 ETG func-
tions, with exponents ranging from 10−6 to 101. The overlap cutoff
was empirically set to 0.15, a value that provided the best results in
terms of both the HHG spectra and ionization probabilities (when
compared to the numerical reference described below). The cosine
cutoff was adjusted separately for each angular momentum in each
basis set so that in every basis set, the number of functions with a
given l is equal to 19 for l = 0 or 20 − l for l ≥ 1, reproducing the
correct degeneracy of the unoccupied orbitals of the hydrogen atom.
Since the ARO construction scheme aims at describing a large num-
ber of excited and continuum states, it is natural that these basis sets
lack functions decaying sufficiently fast with the distance from the
nucleus that are required to describe the 1s hydrogen ground state
(see the supplementary material). To compensate for this, each basis
set was supplemented with the 1s orbital from the STO-6G hydrogen
basis set.

For comparison, we constructed a Kaufmann basis set, also
containing functions with nine lowest angular momenta, fitted to
STOs with principal quantum numbers from 2 to 20. The STO-6G
hydrogen orbital was also added to this basis set. It can be seen that
the number of functions is equal for both kinds of basis sets, which
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ensures a fair comparison of the results. We extended the results of
Kaufmann (who provides the Gaussian exponents up to l = 5 only122)
by finding numerical roots of the derivatives of S(n, l, ζ, α) [Eq. (10)]
with respect to α for different values of n and l.

After the diagonalization of the time-independent CAP-free
Hamiltonian matrix in each of the constructed basis sets, the real-
time propagation is performed, starting from the generated ground
state. In the case of the hydrogen atom, due to the cylindrical sym-
metry of the Hamiltonian, only orbitals with the projection of the
orbital angular momentum parallel to the linearly polarized electric
field are coupled to it and contribute to the dipole moment. There-
fore, in order to speed up the calculations, we use only functions with
m = 0.

Formally, the propagation scheme presented in Eq. (5b)
involves a time-ordered matrix exponential, which can be cum-
bersome to calculate. To avoid this and to keep the propagation
algorithm consistent with the one used in the grid-based calcula-
tions, we replace the propagator in Eq. (7) with the Crank–Nicolson
propagator,144

U(t+Δt, t) = (1 +
iΔt
2
H(t + Δt/2))

−1
(1 − iΔt

2
H(t + Δt/2)), (15)

so the matrix propagation equation changes to

(I +
iΔt
2
H(t + Δt/2))c(t + Δt) = (I − iΔt

2
H(t + Δt/2))c(t), (16)

where I is the identity matrix. The time step Δt is set to 0.01 a.u. and
the total propagation time is equal to twice the duration of the pulse.

C. Grid-based calculations
As a numerical reference, we also performed grid-based real-

time propagation of the hydrogen atom using the QPROP soft-
ware.145,146 These calculations are also performed within the velocity
gauge. In QPROP, the hydrogen atom wavefunction is expanded in
partial waves (spherical harmonics multiplied by the corresponding
time-dependent radial functions),

Ψ(r, t) = 1
r

Lmax

∑
l=0

m=−l

∑
m=−l

Rlm(r, t)Ylm(θ,ϕ). (17)

In our calculations, we expand the wavefunction in Lmax = 40 par-
tial waves, which are sufficient to achieve the convergence of the
HHG spectra and the ionization probabilities for all investigated
laser intensities (meaning that adding functions with higher angu-
lar momenta had no effect on the obtained results). The radial grid
extends to 120 bohrs, with the spacing set to 0.1 bohr. The propaga-
tion algorithm and the time step and the total propagation time are
the same as in the basis set calculations.

D. The complex absorbing potential
Because the used Gaussian basis sets are not complete, due to

a finite number of both angular and radial functions, they are not
able to properly describe the wavefunction at an arbitrary distance
from the nucleus. This causes unphysical reflections of parts of the
wavefunction associated with the continuum eigenstates and their
interference with the bound states. A similar problem is encoun-
tered in the grid-based approach, where the wavefunction is reflected

after reaching the grid boundary. The most common way to avoid
such artifacts is to use a complex absorbing potential, which effec-
tively eliminates the components of the wavefunction that travel fur-
ther away from the center of the system than a predefined distance
rCAP, simulating the ionization process.147,148 Since the introduction
of the CAP breaks the conservation of the norm of the wavefunc-
tion, the time propagation is no longer unitary. One of the most
prominent and frequently used CAPs is the potential introduced by
Manolopoulos, distinguished by its sound mathematical basis.149–153

Unfortunately, this potential cannot be applied in any basis set calcu-
lations, since it contains a singularity that causes the matrix elements
of VCAP to diverge. This difficulty can be overcome by using a poly-
nomial form for the CAP. Thus, in both the basis set calculations
and the grid-based calculations, we implement a quadratic CAP of
the form

VCAP(r) = η θ(r − rCAP) (r − rCAP)2, (18)

where θ(r) is the Heaviside step function and rCAP denotes the start-
ing position of the CAP. The parameter η = 2.4× 10−4 was optimized
to reproduce the results obtained on a grid with the CAP derived by
Manolopoulos.149 The details of the construction of the CAP and its
properties are presented in the Appendix.

The choice of the CAP starting position is not unique and it
can strongly affect the final results, especially the ionization prob-
ability. In some studies, rCAP is defined by the quiver amplitude of
the electron in the oscillating electric field and thus depends on the
simulation conditions.77,154,155 In others, it is placed more arbitrarily
based on the van der Waals radius of the examined atom.156 In the
present paper, we propose a universal method for determining an
optimal rCAP, which depends only on the simulated system and not
on the external perturbation. It can simultaneously be derived based
on three different premises:

1. The first reasoning is purely theoretical. For any atom, we can
define a critical electric field strength above which the electron
can escape the Coulomb potential of the nucleus in a classical
manner, and the ionization mechanism switches from the tun-
neling ionization to the barrier-suppression ionization.157 For
hydrogen-like ions, the value of this field is usually defined as
Ecrit = Z3/16, so for the hydrogen atom, we obtain Ecrit = 0.0625
a.u., which corresponds to the previously mentioned value of
intensity 1.37 × 1014 W/cm2. Since the three-step model of
HHG involves the tunneling step, we can assume that only the
electron trajectories that do not exceed the quiver amplitude
associated with Ecrit contribute to the harmonic generation.
We can thus define rCAP as the critical field quiver amplitude,
which for the hydrogen atom is equal to 19.3 bohrs.

2. The CAP starting position should be located in a range where
the asymptotic ionization probability measured at the end of
the time propagation is invariant with respect to rCAP. We per-
formed a series of grid-based propagations for the hydrogen
atom using our CAP with rCAP varying from 5 bohrs to 35
bohrs and found this range to be about 9 bohrs–21 bohrs. A
similar reasoning concerning the invariance of the ionization
rates with respect to rCAP was adopted by Sissay et al., who
achieved results consistent with ours.158

3. The optimal value of rCAP should also maximize the rela-
tive height difference between the harmonic plateau and the
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background beyond the harmonic cutoff, leading to the
sharpest cutoff. Placing the CAP starting position too close
from the nucleus eliminates some of the electron trajectories
that should end in the recombination and harmonic gener-
ation, lowering the intensities of harmonic peaks. Similarly,
placing it too far from the nucleus spuriously includes some
trajectories of the ionized electron in the HHG process, ele-
vating the post-cutoff background. By performing similar test
calculations as in the previous point, we determined the value
of rCAP that maximizes the cutoff height to be about 19 bohrs.

It can be seen that all three approaches lead to a similar value of the
optimal rCAP, which is about 19 bohrs. In our calculations, we extend
this value to 19.5 bohrs in order to ensure that the CAP minimally
overlaps with the bound eigenstates.

V. RESULTS

A. Time-independent calculations
Before comparing the results obtained via the real-time prop-

agation, we first focus on the general properties of the ARO basis
sets, particularly their ability to approximate the time-independent
Hamiltonian eigenspectrum of the hydrogen atom. This provides
us a preliminary assessment of their potential to describe the evo-
lution of the time-dependent wavefunction. The characteristics of
each of the constructed ARO basis sets (named ARO30, ARO60,
and ARO90 based on the maximum principal quantum number of
the Slater orbital in the respective reference subset), compared with
the Kaufmann basis set (analogously named K20), are presented in
Table I. As predicted, the ARO construction scheme encompasses a
much wider range of GTO exponents. This range also shifts toward

TABLE I. The characteristics of the ARO basis sets and the Kaufmann basis set used throughout the calculations.

ARO30 ARO60 ARO90 K20

Number of basis set functionsa 144 144 144 144
Number of linearly independent functionsa,b 139 144 144 101
Lowest exponentc 6.048 084 × 10−4 7.329 910 × 10−5 9.702 192 × 10−6 1.711 786 × 10−3

Highest exponentc 1.969 985 1.229 846 8.045 241 × 10−1 1.012 151 × 10−1

Number of bound Hamiltonian eigenstates (E < 0) 31 47 64 23
Number of continuum Hamiltonian eigenstates (E > 0) 108 97 80 78
Lowest Hamiltonian eigenvalue (ground state energy) −0.499 908 −0.499 907 −0.499 905 −0.498 694
Highest Hamiltonian eigenvalue 21.881 96 12.609 12 7.715 54 0.985 72

aOnly functions with m = 0 counted.
bWith the threshold for the minimal overlap matrix eigenvalue equal to 10−8 .
cNot counting the STO-6G 1s orbital.

TABLE II. Few lowest orbital energies calculated with the used basis sets. The ellipses denote that none of the computed
Hamiltonian eigenvalues can be attributed to a given hydrogenic state.

Orbital Exact value ARO30 ARO60 ARO90 K20

1s −0.5 −0.499 908 −0.499 907 −0.499 905 −0.498 694
2s −0.125 −0.124 995 −0.124 993 −0.124 987 −0.124 450
2p −0.125 −0.124 988 −0.124 988 −0.124 986 −0.124 314
3s −0.0(5) −0.055 556 −0.055 556 −0.055 556 −0.055 551
3p −0.0(5) −0.055 554 −0.055 553 −0.055 552 −0.055 359
3d −0.0(5) −0.055 552 −0.055 552 −0.055 551 −0.055 304
4s −0.031 25 −0.031 250 −0.031 250 −0.031 250 −0.031 243
4p −0.031 25 −0.031 250 −0.031 250 −0.031 250 −0.031 240
4d −0.031 25 −0.031 249 −0.031 249 −0.031 248 −0.031 163
4f −0.031 25 −0.031 249 −0.031 249 −0.031 248 −0.031 137
5s −0.02 −0.019 999 −0.020 000 −0.020 000 −0.019 904
6s −0.013(8) −0.013 881 −0.013889 −0.013 889 −0.012 559
7s −0.010 204 −0.009 933 −0.010 204 −0.010 204 . . .
8s −0.007 813 . . . −0.007 812 −0.007 812 . . .
9s −0.006 173 . . . −0.006 070 −0.006 173 . . .
10s −0.005 . . . . . . −0.004 992 . . .
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smaller exponents as the reference subset is extended since the STOs
with higher principal numbers are characterized by larger values of
⟨r⟩. Due to this fact, the ARO basis sets are practically free of lin-
ear dependencies. Of the three examined basis sets, only ARO30
required a removal of five linear combinations of GTOs in order
to avoid numerical instabilities during the diagonalization of the
Hamiltonian matrix, while in the case of the K20 basis set, this
number exceeds 40.

Interestingly, extending the reference subset of the ARO basis
sets increases the number of bound Hamiltonian eigenstates at the
expense of the number of continuum eigenstates. However, at the

same time, the highest Hamiltonian eigenvalue also tends to rapidly
decrease, resulting in a denser distribution of the states just above
the ionization potential (which should be crucial in simulations with
fields close to the ionization threshold). The highest number of con-
tinuum eigenstates per unit of energy is still achieved using the K20
basis set, but the number of bound states generated by this basis set
is far smaller compared to each of the ARO basis sets.

The energies of the first few hydrogen orbital energies are pre-
sented in Table II. In general, each of the ARO basis sets provides
more accurate energies of the hydrogen orbitals than the K20 basis
set. The degeneracies of the atomic shells are also reproduced more

FIG. 1. HHG spectra (left column) and ionization probabilities (right column) of the hydrogen atom at I0 = 2 × 1014 W/cm2 and nc = 4, obtained using three different ARO
basis sets, compared with the grid-based results. The HHG spectra are presented up to thrice the harmonic cutoff value (denoted by the dotted-dashed line).
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FIG. 2. HHG spectra of the hydrogen atom at different laser intensities and different numbers of optical cycles, obtained using the ARO90 basis set, using the K20 basis set,
and from the grid-based calculations. The spectra are presented up to thrice the harmonic cutoff value (denoted by the dotted-dashed line).
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faithfully. The number of correctly described shells increases with
the ARO reference subset size, and for the ARO90 basis set, we
obtain an excellent agreement with the exact energies up to n = 10.
It is also worth noting that apart from the increase in accuracy of
the high energy states, the accuracy of the lowest eigenvalues tends
to decrease slightly. Although seemingly worrying, this may actu-
ally indicate that the ultimate purpose and motivation behind the
ARO construction scheme—the ability of the basis set to reproduce
as many eigenstates as possible with a comparable accuracy—strives
to be fulfilled.

B. Real-time propagations
In this subsection, we discuss the quality of the results obtained

via the real-time propagation of the hydrogen atom wavefunction
using the constructed ARO basis sets. Let us start by analyzing the
effect of the size of the ARO reference subset on real-time observ-
ables. The exemplary HHG spectra and ionization probabilities cal-
culated using the ARO30, ARO60, and ARO90 basis sets for the
case of I0 = 2 × 1014 W/cm2 and nc = 4 are presented in Fig. 1. It
can easily be seen that extending the ARO reference subset crucially
improves the quality of the HHG spectrum, reducing the noises
in the HHG background beyond the harmonic cutoff. It also has
a positive effect on the presence and position of the cutoff itself.
In the spectrum obtained using the ARO30 basis set, the cutoff
is barely distinguishable, as the intensities of the subsequent har-
monic peaks decrease incrementally with the increase in the har-
monic order. In the spectrum corresponding to the ARO60 basis
set, the cutoff is already visible but located too far compared to
the numerical result (between 50th and 60th harmonics). Finally, in
the ARO90 spectrum, the cutoff is not only clearly visible but also
matches both the grid results and the theoretical value of the 33rd
harmonic.

The effect of the size of the reference subset on the ioniza-
tion probability is less striking, but still visible. It can be seen that
along with adding more STOs, the curves become more ridged and
the inflection points corresponding to the consecutive optical cycles
become more distinct, resembling the grid results.

Since of all the examined ARO basis sets, the ARO90 one pro-
vides clearly the best results, for the sake of clarity and transparency
in the further discussion, we no longer analyze the results obtained
using the ARO30 and ARO60 basis sets.

A comparison of the HHG spectra obtained using the ARO90
basis set, the K20 basis set, and the grid-based calculations for all
simulation conditions considered here is presented in Fig. 2. It can
be seen that in all cases except I0 = 5 × 1014 W/cm2 and nc = 20,
the ARO90 basis set predicts the cutoff position closer to the theo-
retical reference than the K20 basis set. The K20 basis set performs
particularly underwhelmingly at the intensities below the ionization
threshold, as the harmonic peaks are present even after twice the the-
oretical cutoff position. The ARO90 is also observed to reproduce
the shapes of the lowest harmonic peaks more accurately. In general,
both basis sets perform worse in the 20 optical cycle cases than in the
four optical cycle ones. This results from the fact that during longer
pulses, the amount of energy absorbed by the system is larger and the
atom becomes excited to higher energy states that may be described
less accurately using a finite set of functions. Such artifacts are the
shortcoming of the basis set approach in general when compared to

the grid methods. However, while the picture provided by the ARO
basis sets still has potential to be further improved by extending the
reference subset and increasing the number of functions, the K basis
sets clearly reach the limit of their possibilities due to growing linear
dependencies (that is why we do not compare basis sets containing
more functions).

Not to rely solely on the visual assessment of the spectra, we
should introduce a quantitative measure that will allow us to quan-
tify how accurately each of the basis sets reproduces the spectrum
obtained using the grid-based calculations. No such measure for
comparing the HHG spectra has been proposed in the literature
thus far, but our suggestion is to treat the HHG spectrum as any
other signal and apply tools known from the signal processing. A
common method for determining the similarity of two signals relies
on the so-called correlation distance, which for signals A and B is
defined as

Dcorr(A,B) = 1 − (A − Ā) ⋅ (B − B̄)
∥(A − Ā)∥2∥(B − B̄)∥2

, (19)

where Ā and B̄ are the mean values of the signals A and B. One
can immediately notice the resemblance to the previously intro-
duced cosine distance (12). The only difference is that the correla-
tion distance includes the mean values of the signals, and thus, it is
insensitive to shifting the signals along the y axis. In comparing the
HHG spectra, this is more appropriate, since we are interested only
in the relative differences between values at given points on the x
axis (e.g., the presence of the harmonic peaks beyond the theoret-
ical cutoff position). Similar to the cosine distance, the correlation
distance can also assume values from 0 to 2. For 0 < Dcorr < 1, the
signals are positively correlated, for Dcorr = 1, there is no (either pos-
itive or negative) correlation between the signals, and for 1 < Dcorr
< 2, the signals are negatively correlated. In our case, A and B are
the decimal logarithms of the HHG spectra and Ā and B̄ are their
mean values. The reason for such a choice is that the intensity of
the lowest harmonics is usually larger by several orders of magni-
tude than the intensity of the highest ones, so it assures that the
correlation distance depends on the whole shape of the spectrum
and not only on the shapes of the few highest peaks. The correlation
distances between the spectra obtained from the basis set calcula-
tions and from the grid-based calculations are presented in Table III.

TABLE III. The correlation distances between the HHG spectra obtained from the
basis set calculations and from the grid-based calculations under different simulation
conditions. When calculating the correlation distance, the spectra were truncated at
the harmonic order equal to thrice the harmonic cutoff.

I0 nc ARO90 K20

5 × 1013 4 0.067 75 0.098 79
20 0.160 25 0.221 43

1 × 1014 4 0.061 79 0.132 08
20 0.199 53 0.219 76

2 × 1014 4 0.044 91 0.118 20
20 0.152 15 0.312 49

5 × 1014 4 0.075 07 0.137 54
20 0.167 56 0.220 46
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FIG. 3. Ionization probabilities of the hydrogen atom at different laser intensities and different numbers of optical cycles, obtained using the ARO90 basis set, using the K20
basis set, and from the grid-based calculations.
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It can be seen that for all simulation conditions, the ARO90 basis
set provides a better agreement with the numerical reference than
the K20 basis set, with the correlation distance being over two times
smaller.

In terms of the ionization probability of the hydrogen atom, the
ARO90 basis set also provides a good quantitative agreement with
the numerical reference, as presented in Fig. 3. The largest discrep-
ancy is observed for I0 = 5 × 1014 W/cm2 and nc = 4, where the
ionization probability at the end of the simulation differs from the
grid-based result by about 10%. However, the overall shape of the
curve is still reproduced well. The ARO90 basis set performs better
than the K20 basis set, especially for the lower two intensities, for
which the latter tends to hugely overestimate the ionization proba-
bility. This may be attributed to the poor description of the bound
excited states by the K20 basis set. The lack of functions with suf-
ficiently large GTO exponents causes the wavefunction to dissipate
unphysically and become absorbed by the CAP at a higher rate. For
the intensities above the ionization threshold, the results obtained
using the two basis sets are comparable, although some details in
favor of the ARO20 basis set can be pointed out. The latter provides
a better behavior of the ionization probability at the beginning of
the simulation, where in the case of the K20 basis set, the norm of the
wavefunction begins to decrease too early. Additionally, the constant
behavior of the ionization probability at the end of the simulations,
observed in both the ARO90 basis set calculations and the grid-based
calculations, is not obtained using the K20 basis set.

C. Toward many-electron cases
To present an example of abilities of the ARO basis sets to

describe the electron dynamics in many-electron systems, we per-
formed preliminary real-time time-dependent configuration inter-
action singles (TD-CIS) calculations for the helium atom subjected
to a laser pulse of I0 = 2 × 1014 W/cm2, λ = 800 nm, and four
optical cycles and once again compared the performance of an
ARO basis set with the performance of a Kauffman basis set. Dur-
ing both fitting procedures, the exponent ζ was set to 1.7, which

FIG. 4. HHG spectra of the helium atom at I0 = 2× 1014 W/cm2 and nc = 4 obtained
using the ARO90He basis set and the K10He basis set. The HHG spectra are
presented up to thrice the harmonic cutoff value (denoted by the dotted-dashed
line).

is widely accepted as the effective nuclear charge of helium. We
use the same quadratic CAP as in the hydrogen atom simulations,
with starting position at 1542 bohrs (a value determined using the
method described in Sec. IV D). Because in this case, the presence of
the electron–electron repulsion necessitates calculations of the two-
electron integrals and including the basis functions with all possible
values of the azimuthal quantum number, we had to reduce the size
of the used basis sets to six lowest angular momenta and to 10 − l
functions per angular momentum. In the Kauffman scheme, it was
achieved by fitting functions only to first ten STO shells (thus, this
basis set is dubbed K10He). In the ARO scheme, we used a sam-
pling set of the same size as in the calculations of the hydrogen
atom but varied the cosine cutoffs to obtain a desired number of
GTOs per each angular momentum (thus, this basis set is dubbed
ARO90He). Both basis sets were supplemented with the 1s contrac-
tion optimized to minimize the Hartree–Fock ground state energy
of the helium atom.159 The HHG spectra generated using both basis
sets are presented in Fig. 4. As it can be clearly seen, the ARO basis
set is able to correctly reproduce the HHG cutoff position, where
the K basis set fails completely. The results for even larger systems,
including the multicenter ones, are planned to be presented in future
works.

VI. CONCLUSION
In this paper, we introduced a novel systematic scheme for the

construction of the Gaussian basis sets that are suitable to describe
atomic and molecular excited and continuum states. Similar to the
approach presented by Kaufmann et al.,122 our approach has strong
theoretical foundations, but it also bypasses most of the limitations
related to the use of the K functions. Using the ARO basis sets, we
are able to quantitatively or semi-quantitatively reproduce the HHG
spectra of the hydrogen atom for intensities below and slightly above
the ionization threshold, especially for the shorter exciting pulses.
For the intensity well above the ionization threshold and for longer
laser pulses, there is some disagreement observed, especially in the
harmonic cutoff position. However, in most cases, these discrep-
ancies are notably smaller than using the Kaufmann basis set that
has been most frequently used in previous studies covering this sub-
ject of research. The ARO basis sets proposed by us also enable a
very good description of the ionization probability at practically all
intensities.

The results obtained with the ARO basis sets constructed using
different reference subsets explicitly show that a large range of Slater
orbitals is required to properly approximate the time-dependent
wavefunction, even if the laser intensity is relatively low. The omis-
sion of STOs with high principal numbers, which is inevitable in the
approach proposed by Kauffman et al., leads to a notable worsening
of the HHG spectra.

The promising outcomes obtained here for both the hydro-
gen atom and the helium atom indicate that the ARO basis set can
be successfully applied to obtain similar semi-quantitative results
for larger systems, which are currently too complex to be captured
by more precise yet less affordable grid-based methods. It should
be noted that, as demonstrated by the helium atom example, the
ARO construction scheme for many-electron atoms remains essen-
tially the same: the sole difference is the STO exponent ζ, which
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should be replaced by an effective nuclear charge of the atom under
consideration.

The basis set approach we explore in this work can be suc-
cessfully extended to higher levels of theory, such as TD-CISD that
allow for examining the effects of electron correlation on attosecond
processes. The only complication comes from the rising complexity
of the CI matrix (an issue well addressed in the time-independent
quantum chemistry) and thus the increasing order of Eq. (16). More-
over, the ARO construction scheme can possibly be adapted to other
techniques of solving the TDSE. For instance, when simulating the
response in the higher laser frequency regime, the real-time prop-
agation becomes less effective due to the decrease in optimal time
step, and alternative approaches that do not require time discretiza-
tion, such as the (t, t′) technique by Moiseyev et al.,45–47 can be used
coupled to the ARO basis sets.

It should be emphasized that in the present paper, we focus on
basis sets containing only one type of functions designed to describe
the excited and continuum states: either ARO functions or the K
functions. We do not rule out the possibility that even better results
can be obtained by combining the ARO basis set with some other
Gaussian basis sets, analogous to the extensions of the K functions
by Luppi et al.131,135–139 These subjects will also be explored in future
works.

This paper also presents a self-consistent method to deter-
mine the optimal CAP starting position by utilizing three different
approaches: the semiclassical quiver amplitude of the electron in the
electromagnetic field, the convergence of the ionization probability,
and the optimization of the shape of the HHG spectrum. We also
introduce a quantitative measure for comparing the HHG spectra
based on the correlation distance that, to our knowledge, is the first
to appear in the literature.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Gaussian basis sets used
in the calculations.
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APPENDIX: CONSTRUCTION OF THE COMPLEX
ABSORBING POTENTIAL

Here, we describe a derivation of the complex absorb-
ing potential used in our calculations. The CAP developed by

Manolopoulos149 has a complicated form expressed through the
Jacobi elliptic functions, but for practical purposes, it can be approx-
imated as

VM
CAP(r) = Emin θ(r − rCAP)y(x), (A1a)

y(x) = ax − bx3 +
4

(c − x)2 −
4

(c + x)2 , (A1b)

x = 2δkmin(r − rCAP). (A1c)

The constants a, b, and c are defined in Ref. 149. This potential
was specifically designed to minimize the transmission and reflec-
tion and maximize the absorption of the wavefunction. The absorp-
tion efficiency is governed by two parameters, δ and kmin, which are
connected to the minimum energy Emin the wavefunction needs to
possess in order to be absorbed. Unfortunately, due to a singularity
at x = c, this potential is applicable only in grid-based approaches,
where the singular point is usually placed at the grid boundary.

A frequently used alternative is the so-called monomial CAP

VCAP(r) = η θ(r − rCAP) (r − rCAP)o (A2)

of order o, which is free of singularities, but at the cost of lower
flexibility and a less intuitive construction. However, from the per-
spective of the basis set calculations, another important advan-
tage of the monomial CAP is that the necessary CAP integrals
⟨χGTO

lm;α ∣VCAP∣χGTO
l′m′ ;α′⟩ can be evaluated analytically. After inserting the

general GTO expression (1) into the matrix element and applying
the binomial expansion, one obtains a sum of integrals of the form

f = N ∫
∞

0
θ(r − rCAP)r2l+o−t+2 exp(−(α + α′)r2)dr

= N ∫
∞

rCAP

r2l+o−t+2 exp(−(α + α′)r2)dr, (A3a)

N = ηNαNα′(
o
t
)(−rCAP)t , (A3b)

where Nα and Nα′ are the GTO normalization constants and t can
take on values from 0 to o. These integrals have a general solution

f = N rCAP
2l+o−t+3

2
E 1−n

2
(rCAP

2(α + α′)), (A4)

where En(z) is the generalized exponential integral function.141

Because the integrals (A4) have to be evaluated using an
extremely high precision, we use the monomial CAP with o = 2 to
reduce the computational costs. The parameter ηwas determined by
performing a series of grid-based calculations and choosing the value
that best reproduces the observables: the norm of the wavefunction
and the HHG spectra obtained with the Manolopoulos CAP with
δ = 0.2 and kmin = 0.2. The optimal value was found to be 2.4 × 10−4

and proved insensitive to the laser intensity.
It is worth mentioning that although the obtained potential

behaves very similar to the Manolopoulos CAP for small (r − rCAP),
it rises far more slowly for large (r − rCAP), which may lower the
overall absorption efficiency in the grid-based calculations. In order
to compensate for it, the width of the absorbing layer (the distance
between the CAP starting position and the grid boundary) must be
suitably increased. In our calculations, an increase from 32.8 bohrs
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FIG. 5. (a) Potential curves of the
Manolopoulos CAP and the quadratic
CAP employed in our calculations. The
singular point of the Manolopoulos CAP
is denoted with the dashed line. (b)
The HHG spectra of the hydrogen
atom obtained with the Manolopulos
CAP and the quadratic CAP at I0 = 2
× 1014 W/cm2 and nc = 20. (c) The
time-resolved ionization probability of
the hydrogen atom obtained with the
Manolopulos CAP and the quadratic
CAP at I0 = 2 × 1014 W/cm2 and
nc = 20.
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in the case of the Manolopoulos CAP (a value determined by its
parameters) to 100 bohrs in the case of the monomial CAP proved
sufficient to reduce any artifacts resulting from partial reflections of
the wavefunction (Fig. 5). This problem, however, is absent in the
basis set calculations, where the integration of the matrix elements is
performed over the whole radial axis.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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