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We construct optical beams in free space with robust skyrmionic structures in their polarization
fields, both in the electric spin vector for near-circular fields and in the polarization direction for
near-linear fields, and for both Bloch (spiral) and Néel (hedgehog) textures. These structures
are made possible by the spin-orbit coupling of tightly-focused nonparaxial optics as applied to
higher-order Full-Poincaré beams, as well as by standing-wave configurations comprising forwards-
and backwards-propagating waves. Our constructions show near-uniform circular and linear po-
larizations, providing a high degree of topological protection in the absence of nonlinear interactions.
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The field of structured light—the precise shaping of
the spatial dependence of the amplitude, phase and po-
larization of light fields [1]—has produced, over the past
three decades, a wealth of novel structures in the electro-
magnetic field, from phase dislocations [2] and phase vor-
tices [3] to intricate polarization fields, including knots [4],
spirals [5], ribbons [6], Möbius strips [7–9] and higher po-
larization singularities [10], many of which use the spin-
orbit coupling of the tight-focusing regime [11] to intro-
duce new topological features into the light field. Among
these structures, one which has sparked interest recently
is skyrmions [12–14], and the degree to which they can
be recreated within topological photonics.

Skyrmions are topologically-protected excitations that
appear in interacting field theories where the field takes
values in a sphere; a skyrmion is then a spatially localized
region within which the field completely covers this image
sphere. The simplest version, sometimes called a ‘baby’
skyrmion [15], is a three-component vector field in two
dimensions, such as the magnetization at the surface of a
ferromagnet, where a uniform background is punctuated
by a region where every field direction is represented.

These excitations were initially described in the con-
text of high-energy physics [16, 17], where they remain a
key connection between QCD and nuclear physics as well
as a central tool in string theory and related frameworks.
More recently, they have been the subject of focused in-
terest in magnetic systems [18–20]—where they hold tech-
nological potential in magnetic memories [20] and spin-
tronics [21], and have fundamental connections to phe-
nomena like the Hall effect [22]—as well as in cold-atom
spinor condensates [23–32], where they form a fertile test-
ing ground for benchmarking topological physics in quan-
tum simulators [33]. More generally, skyrmions have also
been observed and used in liquid crystals [34], exciton-
polariton condensates [35], and superconductors [36], and
as far afield as neutron stars [37] and other astrophysical
phenomena.

Given their importance in multiple domains of topo-
logical physics, the generation of skyrmions thus forms a
natural target for the toolbox of topological optics. In this
vein, recent experiments have reported a skyrmionic lat-
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tice in the electric field of a linearly-polarized surface plas-
mon polariton [12], as well as an isolated skyrmionic sin-
gularity in the electromagnetic spin angular momentum
vector of an evanescent optical vortex [13], kindling ongo-
ing research into both linear [38–40] and spin-based [41–
43] plasmonic skyrmions.

These structures appear in the evanescent fields near
a surface, and they are deeply reliant on the spin-
momentum locking of evanescent waves [44, 45] to obtain
the mixture of transverse and longitudinal vector fields
required to form a skyrmionic configuration. This raises
the question, therefore, of whether such structures can
appear in propagating fields in free space, in either lin-
ear or circular polarizations. Currently, despite partial
negative [12] and positive [13] answers provided during
the initial explorations, this question remains essentially
open.

In this work we answer this question in the affirma-
tive, by constructing skyrmionic distributions in the po-
larization of tightly-focused propagating laser beams in
free space: we present electromagnetic fields containing
skyrmionic structures, of both Néel and Bloch types, in
the electric spin angular momentum vector of circularly-
polarized three-dimensional fields (which we term C-skyr-
mions), as well as in the major axis of fields with polar-
izations close to linear (which we denote L-skyrmions).

In particular, we present a robust Bloch skyrmion in
the electric spin vector of a suitably focused beam, where
the polarization field is uniformly near-circularly polar-
ized throughout the focus. We also show that a C-
skyrmion texture of Néel type is also possible, though not
as a propagating beam, but relying instead on a standing-
wave arrangement similar to other localized electromag-
netic disturbances constructed recently [46].

Moreover, we show that similar standing-wave config-
urations can produce L-skyrmions with perfectly linear
polarization in free space, and without relying on evanes-
cent fields [12]. These L-skyrmions can also be achieved
with forward-propagating beams, which causes the po-
larization to become elliptical; the skyrmionic structures
then appear in the major-axis distribution of the field.

We present explicit constructions based on the Com-
plex Focus (CF) fields, [47–52], which provide a clean
analytical description of a propagating vector beam in
the nonparaxial regime. That said, the robustness of our
results indicates that they should be reproducible within
Richards-Wolf diffraction theory [53, 54], and are thus ex-
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perimentally realizable.
As an important note, the structures that we examine

here—like the plasmonic skyrmions presented in earlier
work [12, 13]—are essentially products of interference be-
tween different waves, so they are not ‘true’ skyrmions:
there is no physical interaction involving the field which
would stabilize the structure and, as such, they are not
topologically protected in the formal sense; we thus use
the term ‘skyrmionic field’ to mark this distinction. How-
ever, the skyrmionic fields we present here are close to
fully circularly- or linearly-polarized over their entire do-
mains, which entails that they are still robust under per-
turbations, and as close to topologically-protected as pos-
sible within their class. Similarly, this distinction raises
the question of whether suitable optical nonlinearities [55]
where the skyrmionic fields we present would propagate
as topologically-protected solitons.

In the following, we briefly describe the CF fields we use
for our constructions [56], and then address each of the
four skyrmionic structures in turn. Our implementation
is available as Ref. 57.

I. Nonparaxial vector beams

Skyrmionic fields are fundamentally three-dimensional
structures, so they can only be replicated in the polariza-
tion structure of a freely-propagating electric field in non-
absorbing linear media by considering fully nonparaxial
fields. In vacuum, a general monochromatic field with
wavenumber k can be written as a superposition of plane
waves travelling in all directions,

E(r) =

∫
4π

A(u)eiku·rdΩ, (1)

whereA(u) is the plane-wave spectrum (PWS), evaluated
at the radial unit vector u = (cos(φ) sin(θ), sin(φ) sin(θ),
cos(θ)) with spherical polar coordinates φ, θ; to guarantee
a solenoidal field with ∇ ·E = 0, the PWS should satisfy
the transversality condition u ·A = 0.

In this work we restrict our attention to skyrmionic
structures with cylindrical symmetry about the optical
axis, which means that the dependence ofA(u) = A(θ, φ)
on the azimuthal coordinate φ can be given at most by a
global phase, and it is restricted to the form

A(u) = [Ap(θ)êθ +Aa(θ)êφ] eimφ, (2a)
= {Ap(θ) [cos(θ)(cos(φ)êx + sin(φ)êy)− sin(θ)êz]

+Aa(θ)(− sin(φ)êx + cos(φ)êy)} eimφ. (2b)

Here Ap and Aa correspond to the polar and azimuthal
components, respectively, of the PWS, and m ∈ Z is the
total angular momentum number of the field, which en-
codes the phase accrued under global rotations about the
optical axis.

Under this restriction, the azimuthal part of the Fourier
transform in Eq. (1) can be performed explicitly, yielding
the electric fields for the polar and azimuthal parts as

Ep(r) = 2πimeimϕ
∫ 1

−1
duz Ap(uz)e

iuzkz

[
−iuzêρJ ′m(uρkρ)

+
muz
uρkρ

êϕJm(kρuρ)− uρêzJm(uρkρ)

]
(3a)

and

Ea(r) = −2πimeimϕ
∫ 1

−1
duz Aa(uz)e

iuzkz

×
[
m

kρuρ
êρJm(uρkρ) + iêϕJ ′m(uρkρ)

]
, (3b)

respectively, in terms of uz = cos(θ) and uρ = sin(θ) =√
1− u2z, and the cylindrical coordinates (ρ, ϕ, z) of r.

Thus, the azimuthal component of the PWS produces a
primarily azimuthal polarization, whereas the polar com-
ponent produces a primarily radially and longitudinally
polarized field; since the two parts of the PWS can be
set independently, this provides the ability to control the
azimuthal component independently of the radial and lon-
gitudinal components.

Moreover, the longitudinal component along êz is
caused exclusively by the polar part Ap(θ)êθ of the field,
which appears 90° out of phase with the radial compo-
nent. If Ap(θ) is real-valued (up to a global phase), then
at the focal plane this phase difference carries through
to E(r): as a general rule, the effect of the longitudinal
component is to induce a forwards ellipticity, which is well
known as the source of a transverse spin density [9, 58] in
nonparaxial optics.

These highly-nonparaxial fields are most commonly ob-
tained by focusing paraxial fields using a microscope ob-
jective with a high numerical aperture. This setting
is cleanly described using Richards-Wolf diffraction the-
ory [53, 54], illustrated in Fig. 1, which gives E(r) as a
(typically numerical) integral over the original paraxial
illumination.

A simpler, fully-analytical description, on the other
hand, is offered by CF fields [47–51]. These are fully-
nonparaxial solutions of the (vector) Helmholtz equation,
built on the realization that the basic spherical multipolar
solutions of the Helmholtz equation,

Λl,m(r) = 4πiljl(kr)Yl,m(θ, φ) (4)

are entire functions of the Cartesian coordinates (x, y, z),
and they thus remain solutions if one of the coordinates
is displaced by a complex offset, to Λl,m(r− iζêz). (Here

FIG. 1. Focusing of a paraxial beam by an aplanatic system.
To compute the focused field, the incident paraxial beam is
decomposed into its radial (E(p)

ρ ) and azimuthal (E(p)
φ ) com-

ponents. The radial component is rotated by the lens giving
rise to the radial (E(f)

ρ ) and longitudinal (E(f)
z ) components,

while the azimuthal component is focused without change.
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jl are spherical Bessel functions, Yl,m(θ, φ) are spherical
harmonics, and r =

√
x2 + y2 + z2.) For small ζ the so-

lutions are roughly isotropic, and as ζ increases they take
the form of tightly-focused beams, with ζ corresponding
to the Rayleigh range. In the loosely-focused limit, kζ �
1, Λ0,0 becomes a paraxial Gaussian beam [47, 48, 59], and
Λl,±l become Laguerre-Gaussian functions without radial
nodes [3, 49, 51].

Finally, these scalar solutions can be elevated to sole-
noidal vector solutions by means of the polarization op-
erators

V(M)
p f(r) = 1

ik∇× (pf(r)) (5a)

V(E)
p f(r) = − 1

k2∇× (∇× (pf(r))) (5b)

V(±)f(r) = V
(M)
ê±

f(r)∓ iV(E)
ê±

f(r) (5c)

of magnetic, electric, and helicity type, respectively,
where p is an arbitrary vector and ê± = 1√

2
(êx ± iêy).

Using these tools we thus obtain

E
(M)
l,m,p(r) = V(M)

p Λl,m(r), (6a)

E
(E)
l,m,p(r) = V(E)

p Λl,m(r), (6b)

E
(±)
l,m(r) = V(±)Λl,m(r) (6c)

as the corresponding Complex Focus fields.
In Fourier terms, the scalar multipolar solutions given

in Eq. (4) have a PWS given by a pure spherical har-
monic Yl,m(u). (The vector solutions are obtained, us-
ing the u ↔ 1

ik∇ correspondence, by the local polar-
izations V (M)

p = u × p, V (E)
p = u × (u × p), and

V (±) = V (M)
ê±

± iV (E)
ê±

.) The complex displacement to
Λl,m(r − iζêz) can be introduced directly into Eq. (1),
where it factors out as the amplitude ekζ uz = ekζ cos(θ).
This factor strongly biases the PWS towards the forwards
hemisphere, with a relative power of e−kζ remaining in
backward-propagating waves, similarly to Richards-Wolf
configurations, where there is strictly zero power in those
modes.

II. Bloch C-skyrmion

We now turn to the construction of skyrmionic fields,
starting with a Bloch (spiral) skyrmion built from a
circularly-polarized field and, specifically, from its elec-
tric spin angular momentum, which is orthogonal to the
polarization plane. To make this skyrmion, we require
the spin to point forwards at the centre of the beam
and backwards at the edge of the focus, connected by
a smooth transition during which the spin turns laterally
via the azimuthal direction while keeping a zero radial
component. In other words, our beam should be circu-
larly polarized at the centre and at the edges, with op-
posite helicities, and the polarization ellipse should flip
smoothly in between, as shown in Fig. 2.

In particular, this requires a ring of points where the
spin is fully azimuthal, corresponding to a circular po-
larization in the radial-longitudinal plane, which matches
the forwards-ellipticity picture for polar fields we just dis-
cussed. When all of this is assembled together, we get

the far-field picture shown in Fig. 1: a higher-order full-
Poincaré beam [60–62] with right-circular polarization on
the axis, giving way to radial and then left-circular polar-
izations at larger radii. This beam is achieved by combin-
ing a right-circularly polarized gaussian beam with a left-
circularly polarized vortex with orbital angular momen-
tum (OAM) number ` = 2. In the nonparaxial regime,
this beam can be written in terms of CF fields as

EBCS(r) = cos(γ) cg(ζg)E
(+)
0,0 (r− iζgêz)

+ sin(γ) cv(ζv)E
(−)
2,2 (r− iζvêz), (7)

with independent Rayleigh ranges ζg and ζv for the Gaus-
sian and vortex parts, and with a mixing angle γ control-
ling their relative intensity; the normalization constants
cg(ζg) and cv(ζv) are set to ensure equal power on both
components.

The tight focusing preserves the main features of this
polarization structure in the transverse plane, and adds
a longitudinal component to lift the linear radial polar-
izations to forward-elliptical, completing the skyrmionic
structure. The full skyrmionic character of this polar-
ization field is most readily evident in the electric spin
angular momentum density,

SE =
1

||E||2
Im(E∗ ×E), (8)

which points in the direction normal to the polarization
ellipse, and whose value quantifies the degree of ellipticity,
with 0 corresponding to linear polarization and 1 to circu-
lar polarization. This electric spin vector is related to the
electromagnetic spin density for which evanescent-wave
skyrmionic fields have been demonstrated [13], but (as
argued previously in the context of superchirality [63]) it
is more directly relevant for prospective applications that
involve dipole interactions with matter.

In its basic form, the field structure in Eq. (7) will pro-
duce a nontrivial skyrmionic topology, but it will be far
from optimal and present, e.g., points with very low el-
lipticity. To address this, we use the free parameters ζg,
ζv and γ to optimize the field, by minimizing the (dis-
cretized) integral

∫ ρmax

0
|E(ρ) ·E(ρ)|/||E(ρ)||2 dρ over the

cylindrical radial coordinate ρ, to ensure that the field
stays as close to circular as possible, under the constrain

FIG. 2. Polarization ellipses and the electric-spin distribution
for the Bloch C-skyrmion Eq. (7).
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that Sz(ρmax) < −(1 − ε)||SE(ρmax)|| to guarantee that
the spin changes direction at the edge of the region of
interest.

We show this skyrmionic field in Figs. 2 and 3, with
the optimized parameters kζg ≈ 9.20, kζv ≈ 4.39 and
γ = 75.39°, showing a roughly flat-top intensity profile
(Fig. 3(c)), a near-unity electric spin with smooth sinu-
soidal oscillations in the cylindrical components Sρ and
Sz as well as near-zero Sφ (Fig. 3(b)), and, in particular, a
clear skyrmionic spin distribution (Fig. 3(a)), thus estab-
lishing a robust Bloch C-skyrmion using tightly-focused
propagating waves.

III. Néel C-skyrmion

Given this success, it is natural to look for similar
constructions where the electric spin of a tightly-focused
wave exhibits a Néel (hedgehog) skyrmionic structure,
that is, where the spin vector tilts radially instead of
azimuthally as it switches from forwards- to backards-
facing. To produce such a structure, we would require
the polarization ellipses to have (say) their major axes
along the azimuthal direction, and their minor axes along
a linear combination of êz and êρ. In turn, this would re-
quire the longitudinal and radial components of E(r) to
be strictly in phase with each other (up to a sign).

However, as mentioned earlier, the natural phase rela-
tionship between the radial and longitudinal components
of the field is a 90° phase delay, as follows from Eq. (3a).
This phase relationship can be altered by choosing a polar
amplitude Ap(θ) with a nontrivial phase in Eq. (1), or by
exploiting the small radial component produced by the
azimuthal part Aa(θ)êφ of the field, shown in Eq. (3b),
under nonzero total angular momentum number m 6= 0,
but both of these mechanisms invoke precise cancellations
of otherwise fixed quantities, so they can only be expected
to work at a discrete set of radii instead of uniformly over
the focal plane.

That said, this structure can indeed be achieved, by

FIG. 3. Bloch C-skyrmion: (a) Electric spin distribution, (b)
spin components and norm, and (c) amplitude of the field in
Eq. (7) at the focal plane.

using a standing-wave configuration and dropping the re-
quirement that the power in the PWS be localized in
the forwards direction. In particular, if the PWS satisfies
Ap(θ) = Ap(π−θ), then the radial component of the field
Eq. (3a) at the focal plane must vanish; alternatively, if
Ap(θ) = −Ap(π−θ) then the longitudinal component be-
comes zero. Each of these symmetries thus allows a polar
field (with m = 0) to have a purely longitudinal or purely
radial polarization; in combination, they allow us to ma-
nipulate the two components independently, and thus to
fix the phase relationship between them as required.

To build a concrete example, we use the pure multipo-
lar fields with these symmetries, so for the longitudinal
component we use the polar field E

(E)
1,1,êz

(r), with an even
Ap(θ). For the radial and azimuthal components, we use
E

(M)
1,0,ê+

(r) and E
(M)
3,2,ê−

(r), both of which are circularly po-
larized in the transverse plane, with odd Ap(θ) and thus
no longitudinal component. Finally, the mixing angles γ
and δ in this linear combination,

ENCS(r) = cos(δ)
[
cos(γ)E

(M)
1,0,ê+

(r)− sin(γ)E
(M)
3,2,ê−

(r)
]

+ sin(δ) E
(E)
1,1,êz

(r), (9)

provide the free parameters to control how these compo-
nents interact to produce the skyrmionic structure.

Fig. 4 shows the resulting field, using mixing angles
γ = 87.95° and δ = 7.18° optimized (as with the Bloch C-
skyrmion) to maximize the circularity of the polarization.
This field shows a clear Néel skyrmionic structure in the
spin and, although the intensity at the centre is relatively
low, the spin remains at near-unity throughout the struc-
ture. That said, further improvement of this structure—
for instance, using standing-wave Complex Focus fields
with appropriate symmetries—is certainly possible.

FIG. 4. Néel C-skyrmion: (a) Electric spin distribution, (b)
spin components and norm, and (c) amplitude of the field in
Eq. (9) at the focal plane. The intensity at the origin is 8.85%
of the maximal intensity at kρ = 3.84.
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FIG. 5. Bloch L-skyrmion: (a) Major axis distribution, (b)
major axis components and norm, and (c) amplitude of the
field in Eq. (10) at the focal plane.

IV. Bloch L-skyrmion

Having constructed skyrmionic structures in the elec-
tric spin vector of circularly-polarized fields, it is natu-
ral to ask whether the same can be done with linearly-
polarized propagating fields, as has been shown al-
ready for evanescent fields produced by plasmonic struc-
tures [12], and whether this would require standing-wave
or directional configurations.

To achieve a Bloch L-skyrmion, we simply need a field
with a longitudinal and azimuthal component that are in
phase or π out of phase, and this can be easily arranged,
since the two components can be fixed independently. In
general, there will be a radial component coupled to the
longitudinal one, with a 90° phase difference, but as long
as it is smaller than the other two it will only cause the
polarization to be elliptical without changing the direc-
tion of the major axis.

This implies that the field will retain some ellipticity,
with the skyrmionic structure present in the major axis
of the polarization ellipse. That said, if we optimize the
parameters to minimize the spin magnitude (or, alter-
natively, to maximize the magnitude of the polarization
major axis), the resulting field can be made near-linearly
polarized.

As a concrete example, we mix the predominantly lon-
gitudinal field E

(E)
0,0,êz

(r − iζpêz) together with the az-

imuthal vector vortex E
(M)
0,0,êz

(r − iζaêz) with a suitable
phase:

EBLS(r) = − cos(γ) cp(ζp)E
(E)
0,0,êz

(r− iζpêz)

+ i sin(γ) ca(ζa)E
(M)
0,0,êz

(r− iζaêz). (10)

The resulting field, shown in Fig. 5 for the optimized pa-
rameters kζp = 0.10, kζa = 1.92 and γ = 58.50°, shows a
clear spiral skyrmionic structure in the major-axis distri-
bution.

FIG. 6. Néel L-skyrmion: (a) Major axis distribution, (b)
major axis components and norm, and (c) amplitude of the
field in Eq. (11) at the focal plane.

V. Néel L-skyrmion

Finally, we turn to the Néel L-skyrmion, a hedgehog
structure in the major axis of the polarization field. In
this case, we require a purely polar field in which the rel-
ative phase between the longitudinal and radial compo-
nents of the field is smaller than 90°, so that the resulting
polarization is always elliptical, with a major axis that
changes without discontinuities.

To achieve this, we superpose the radial vector vortex
E

(E)
1,0,êz

(r − iζ2êz) together with the purely-longitudinal

field E
(E)
0,0,êz

(r− iζ1êz), allowing their Rayleigh ranges ζ1
and ζ2, as well as the mixing angle γ, as free parameters:

ENLS(r) = cos(γ) c1(ζ1)E
(E)
0,0,êz

(r− iζ1êz)

+ i sin(γ) c2(ζ2)E
(E)
1,0,êz

(r− iζ2êz). (11)

The resulting field, shown in Fig. 6 for the optimized
parameters kζ1 = kζ2 = 0.10 and γ = 35.85° (again max-
imizing the integral of the magnitude of the major axis),
exhibits the required Néel skyrmionic texture, and has
near-perfect linear polarization throughout the region of
interest.

In this case, both component fields are weakly di-
rectional, with nonzero focusing parameters ζ1 and ζ2
but still with significant power in backwards-propagating
modes at θ > π/2 in the PWS. This backwards-propa-
gating power can be eliminated by increasing the value
of ζ1 and ζ2: this tends to increase the ellipticity, but it
retains the skyrmionic structure in the major axes of the
polarization ellipses.

Alternatively, it is also possible to make the polariza-
tion of the fields exactly linear, by setting all the focusing
ζ parameters to zero, which describes a perfect standing-
wave configuration with equal power on forwards- and
backwards-propagating modes. We show the resulting
skyrmionic fields in Fig. 7, for both Bloch and Néel L-
skyrmions.
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FIG. 7. Major axis distribution and amplitude at the focal
plane of the perfect (a) Bloch and (b) Néel L-skyrmions given
in Eqs. (10,11) by setting all the ζj = 0.

VI. Outlook

The constructions we have presented show that both
Bloch and Néel (spiral and hedgehog) skyrmionic tex-
tures are possible in both the electric spin vector for
quasi-circular fields as well as the major-axis distribution
for near-linear polarizations. These structures are made
possible, in part, by standing-wave configurations, while
others—most notably the Bloch C-skyrmion—arise in
standard propagating beams as a natural consequence of
the spin-orbit coupling of nonparaxial optics [64], partic-
ularly as applied to the tight focusing of higher-order Full
Poincaré beams [62, 65], which have also been previously
interpreted as forming topological optical skyrmions [14].

Moreover, the polarizations in our constructions are al-
most exactly circular and linear, respectively, and they
have high intensities over the polarization singularity,
which implies that they are robust with respect to per-
turbations. This is important since, in the absence of
nonlinear optical interactions giving energy to the topo-
logical excitation [17], optical skyrmions are not ‘true’
skyrmions and thus are not, formally speaking, topolog-
ically protected. Nevertheless, they are still robust, and
they are as protected as e.g. an optical vortex [66].

In this regard, it is worth asking whether it is possi-
ble to produce perfect C-skyrmions—that is, skyrmionic
fields with exactly circular polarization throughout the
structure—analogous to the perfect L-skyrmions demon-
strated in Fig. 7. The closeness to circularity of our ex-
isting constructions, together with the topological equiva-
lence of linear and circular polarizations in the Majorana-
and Poincarana-sphere representations [67, 68], indicate
that this should be possible. On the other hand, it is
generally harder to achieve perfect circular polarizations,
since each component needs to satisfy a specific relation
in magnitude as well as in phase, whereas for linear po-
larizations an appropriate phase relation is sufficient.

In a broader outlook, the optical skyrmions we have
presented open the door to the direct creation, detec-

tion and manipulation of skyrmions in both magnetic
and BEC contexts [69, 70] using matching structures in
light, thus allowing for skyrmionic microscopes and opti-
cal tweezers [52, 71, 72], as well as e.g. enabling quantum
communication between skyrmionic excitations held in
separate cold-atom spinor traps, or exciting and probing
novel resonances in nanoparticle resonators [73].

On a related note, it should also be possible to translate
the C-skyrmions we have shown into linearly-polarized
structures by using the nonlinear harmonic response or
chiral media [74], which naturally couples elliptical po-
larizations with linear polarizations along the ellipse’s
normal. This could thus, in principle, directly induce
a skyrmionic structure into the field by using an optical
source with that structure. More generally, the possibil-
ity of robust optical skyrmionic structures in propagating
space opens the possibility for nontrivial effects within
nonlinear optics, both in Kerr-type effects as well as in
low- and high-order harmonic generation [75].

Finally, on the optical side, the presence of Bloch C-
skyrmions in tightly-focused beams also raises the possi-
bility that similar structures will appear in suitably thin
optical waveguides, potentially as preserved waveguide
eigenmodes, which would further strengthen the potential
applications of optical skyrmions for classical and quan-
tum communication.
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