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Abstract
The spectrum and eigenstates of any field quadrature operator restricted to a
finite number N of photons are studied, in terms of the Hermite polynomials. By
(naturally) defining approximate eigenstates, which represent highly localized
wavefunctions with up to N photons, one can arrive at an appropriate notion
of limit for the spectrum of the quadrature as N goes to infinity, in the
sense that the limit coincides with the spectrum of the infinite-dimensional
quadrature operator. In particular, this notion allows the spectra of truncated
phase operators to tend to the complete unit circle, as one would expect. A
regular structure for the zeros of the Christoffel–Darboux kernel is also shown.

PACS numbers: 03.65.−w, 03.65.Aa, 42.50.−p

S Online supplementary data available from stacks.iop.org/JPhysA/45/395303/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

The optical phase within quantum optics has posed a problem ever since Dirac [1] first
formulated an approach to the subject based on Hamilton’s equations for the energy and phase
as conjugate variables, and using a Hermitian operator for the phase which was later proved
inconsistent. Several approaches to this problem have included the use of unphysical negative
number states [2], nonunitary phase operators [3, 4] and the truncation of the Hilbert space to
obtain unitary operators.

This last scheme, due to Pegg and Barnett [5–7], consists of restricting the full Hilbert
space H to a subspace containing at most N photons, HN = span{|0〉, . . . , |N〉}, through
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the action of the projector �̂N = ∑N
n=0 |n〉〈n|. Thus a polar decomposition is found for the

restricted annihilation operator âN = �̂Nâ�̂N , and the unitary exponential phase operator is
used to make physical predictions (in particular those involving its spectrum and eigenvectors)
and finally the limit N → ∞ is taken.

This approach is valuable in that it permits, as opposed to other alternatives, the
construction of a proper Hermitian phase operator, which, however, can be seen as problematic
in that it depends on a limiting procedure that some authors have found unacceptable [8]. After
the publication of Pegg and Barnett’s work, a number of articles appeared which treat a number
of problems related to the truncation of the dimension of the original Hilbert space, searching,
in particular, for coherent states [9 and references therein]. The relationship of the full space
with the truncated space, and the commutation relations possible in it, has also been studied
in [10–17].

In this contribution, we describe, within this formalism, the spectrum and eigenvectors of
the position quadrature operator ξ̂N for a finite number of photons (and thus for any arbitrary
quadrature), making extensive use of Hermite polynomials [18, 19]. (These polynomials’
connections with the harmonic oscillator system are deep, and have been studied e.g. in
[20, 21].) The normalization of the eigenstates is resolved using the Christoffel–Darboux
kernel, and two possible normalizations are given (section 2).

We then show that approximate eigenstates |λ〉N can be naturally defined, similarly to
[18], for all real (pseudo)-eigenvalues λ (section 3), and we define and study a quantitative
measure, dN (λ) = ||(ξ̂N −λ) |λ〉N ||2, for the exactness of this approximation. We give suitable
approximations for this function and find that its analytical continuation into the complex
plane has poles on the zeros of the Christoffel–Darboux kernel; we show numerical evidence
for a regular structure of the latter.

By studying the zeros of dN (λ), which give the exact eigenstates, one can define an
appropriate notion of limit for the spectrum of ξ̂N , in the sense that it tends to the full spectrum
of the infinite-dimensional position operator ξ̂ as N → ∞. We also show that with this notion
of limit, the finite spectra of the truncated phase operators of Pegg and Barnett (which cover
N + 1 equally spaced points on the unit circle) tend to the complete unit circle—which is
what one would expect from a phase operator—in contrast to their assertion in an early paper
[22] that in the N → ∞ limit, the phase operator should have only a countable number of
eigenvalues.

A measure of how good an approximation a given vector is to an eigenvector of the
position operator is also given by the spread of its wavefunction. This is studied in section 4,
where we show that the wavefunctions are highly localized at the pseudo-eigenvalues. We
also calculate and approximate the expectation value and dispersion of ξ̂N and ξ̂ . We finish in
section 5 with a few remarks on the Jacobi matrix representation of the Hermite polynomials.

This work is presented partly because of its own intrinsic interest, and partly in the hope
that it will help to understand better the limiting procedure in Pegg and Barnett’s formalism.
There one tries to understand a hard-to-define operator by approximating it with a sequence
of finite-dimensional operators; here, we have studied the analogous limiting procedure for
the better-understood position operator. More generally, our results give some indication
of features to expect when restricting physical operators with continuous spectra to finite-
dimensional subspaces. Additionally, there are pedagogical applications to the development
of finite-dimensional quantum mechanics through the discretization of a particle’s position.
In that context, the constructions in this paper form a more natural basis than that obtained by
taking equally spaced points.

The results presented here constitute an extension to the work in [23].
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2. Quadrature spectra

Since an arbitrary quadrature ξ̂β = 1√
2
(e−iβ â + eiβ â†) is unitarily similar to the position

quadrature, through the operator Û (β) = eiβn̂, it suffices to consider only the position
quadrature. Thus, we consider the restricted quadrature ξ̂N = 1√

2
(âN + â†

N ), given in the
number basis by the matrix

ξ̂N = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
1 0

√
2 · · · 0 0

0
√

2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0

√
N

0 0 0 · · · √
N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

This operator is the truncation, through ξ̂N = �̂N ξ̂ �̂N , of the infinite-dimensional position
operator ξ̂ , whose domain is D(ξ̂ ) = {|ψ〉 ∈ H : ξ̂ |ψ〉 ∈ H}, and whose spectrum is
continuous and consists of all real numbers, with an infinite-norm eigenbasis |ξ 〉 normalized
to 〈ξ |ξ ′〉 = δ(ξ − ξ ′) such that ξ̂ |ξ 〉 = ξ |ξ 〉.

The characteristic polynomial for ξ̂N (modulo a sign), det(ξ̂ + λ), can be expanded by
minors along the last row and then along the last column to give a recurrence relation,

det(ξ̂N+1 + λ) = 2λ

2
det(ξ̂N + λ) − 2N

22
det(ξ̂N−1 + λ). (2)

This, together with the initial polynomials det(ξ̂0 + λ) = λ and det(ξ̂1 + λ) = 1
2 (2λ2 − 1),

for N = 0 and N = 1, respectively, is sufficient to determine the polynomials for all N.
This can be used to relate them to the standard families of orthogonal polynomials. Since

the Hermite polynomials (as defined in [24]) follow the recurrence relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x), (3)

with initial values H1(x) = 2x and H2(x) = 4x2 −2, one can easily prove that the characteristic
polynomials are given by

det(ξ̂N + λ) = 1

2N+1
HN+1(λ). (4)

In particular, this means that the eigenvalues of ξ̂N are exactly the roots of the (N + 1)th
Hermite polynomial. Since there is no exact formula for these roots above the ninth order
(until which the parity of the polynomials allows exact solutions in terms of radicals), one
might think at first that the diagonalization of ξ̂N is an unassailable problem.

However, the solution can indeed be found by leaving the eigenvalue λ alone and reducing
the system (ξ̂N − λ)|λ〉N = 0 to an upper triangular form using Gaussian elimination; after
this, the system is bidiagonal with coefficients in terms of the Hermite polynomials. (Here we
have switched from the combination ξ̂N + λ to ξ̂N − λ to simplify the algebra, but no results
are affected since as the Hermite polynomials have definite parity, the zeros are unchanged.)
The solution is then found to be

|λ〉N = cN (λ)

N∑
n=0

Hn(λ)√
2nn!

|n〉, (5)

in which cN (λ) is a (nonzero) normalization constant which will be discussed later.
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Independent of how it was obtained, expression (5) can easily be seen to be a solution to
the system (ξ̂N − λ)|λ〉N = 0 by expressing the latter as the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λ〈0|λ〉N + 1√
2
〈1|λ〉N = 0, (6a)

√
n

2
〈n − 1|λ〉N − λ〈n|λ〉N +

√
n + 1

2
〈n + 1|λ〉N = 0, 0 < n < N, (6b)

√
N

2
〈N − 1|λ〉N − λ〈N|λ〉N = 0. (6c)

The solution (5) satisfies (6a) trivially, and (6b) can be seen to be equivalent to the Hermite
polynomials’ three-term recurrence relation (3). It is only (6c) which depends on λ being an
eigenvalue for ξ̂ , since from the Hermite recurrence relation√

N

2
〈N − 1|λ〉N − λ〈N|λ〉N = −1

2

cN (λ)√
2NN!

HN+1(λ).

Thus, for any λ the vector |λ〉N differs only in a single component from being an eigenvector
of ξ̂N :

(ξ̂N − λ)|λ〉N = −1

2

cN (λ)√
2NN!

HN+1(λ)|N〉. (7)

Since the (N + 1)th Hermite polynomial has N + 1 zeros, this construction gives as many
eigenvectors as the dimension of HN and therefore solves the diagonalization problem. The
normalization, however, is still to be fixed. It is natural to ask that the eigenvectors have a unit
norm: that is, to require that

|cN (λ)|2
N∑

n=0

Hn(λ)2

2nn!
= N〈λ|λ〉N = 1. (8)

Here the summation can be resolved into a much simpler form through the use of the
Christoffel–Darboux formula [24, equation (22.12.1)] for the Hermite polynomials,

N∑
n=0

Hn(λ)Hn(μ)

2nn!
= 1

2N+1N!

HN+1(λ)HN (μ) − HN (λ)HN+1(μ)

λ − μ
, (9)

which in the limit μ → λ gives
N∑

n=0

Hn(λ)2

2nn!
= HN (λ)H ′

N+1(λ) − HN+1(λ)H ′
N (λ)

2N+1N!
(10a)

= (N + 1)HN (λ)2 − NHN+1(λ)HN−1(λ)

2NN!
. (10b)

The Christoffel–Darboux kernel is of particular importance in this setting, since it is in
fact part of the integral kernel of the projection operator �̂N = ∑N

n=0 |n〉〈n|. This can be seen
by calculating its matrix elements in the position representation, 〈ξ |�̂N |ξ ′〉, using the fact that
the number-basis wavefunctions are given by [25, equation (BV .33)]

〈ξ |n〉 = 1√
2nn!

√
π

Hn(ξ ) e−ξ 2/2.

4
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One obtains

〈ξ |�̂N |ξ ′〉 =
N∑

n=0

〈ξ |n〉〈n|ξ ′〉 =
N∑

n=0

Hn(ξ )Hn(ξ
′)

2nn!
√

π
e−(ξ 2+ξ ′2)/2

= 1

2N+1N!
√

π

HN+1(ξ )HN (ξ ′) − HN (ξ )HN+1(ξ
′)

ξ − ξ ′ e−(ξ 2+ξ ′2)/2,

which can be used to obtain the projector’s action on wavefunctions as

〈ξ |�̂N |ψ〉 = 1

2N+1N!
√

π
e−ξ 2/2

∫ ∞

−∞

HN+1(ξ )HN (ξ ′) − HN (ξ )HN+1(ξ
′)

ξ − ξ ′ e−ξ ′2/2ψ(ξ ′) dξ ′.

(11)

In this context, the normalization constant cN (λ) is related to the diagonal matrix elements of
the projector via

1√
π |cN (ξ )|2 =

N∑
n=0

Hn(ξ )2

2nn!
√

π
= eξ 2〈ξ |�̂N |ξ 〉,

where λ has been replaced by ξ in cN (λ). Additionally, if (8) is used as a definition for cN (λ),
one can use this to obtain the identity∫ ∞

−∞

e−λ2

|cN (λ)|2
dλ√
π

= Tr(�̂N ) = N + 1.

Of course, the normalization N〈λ|λ〉N = 1 is not the only interesting choice. One other
important option is to have cN (λ) be independent of N; in that case, it is particularly fruitful
to have cN (λ) = π−1/4 e−λ2/2, so that the eigenvectors become

|λ〉N =
N∑

n=0

Hn(λ)√
2nn!

√
π

e−λ2/2|n〉 = �̂N |λ〉,

which are the truncation through �̂N of the full (infinite-dimensional) position eigenvectors
with eigenvalue λ. These truncated eigenvectors have a finite norm which is a monotone
function of N; in fact, with this normalization, N〈λ|λ〉N → ∞ as N → ∞, which reflects the
fact that infinite-dimensional position eigenstates have an infinite norm.

3. Approximate eigenvectors

For each of the N + 1 zeros λ of HN+1(λ) = 0, we have shown the existence of an eigenvector
|λ〉N of ξ̂N , with ξ̂N |λ〉N = λ|λ〉N . However, the vectors |λ〉N can be defined through (5) even
if λ is not an eigenvalue of ξ̂N . In that case |λ〉N is of course no longer an eigenvector, but we
have seen that it is ‘almost’ one, in the sense that only one component disrupts this behaviour;
further, if one is to take the limit N → ∞, then the |N〉 component would seem to lose
importance.

Thus, we propose to view the vector |λ〉N as an approximate eigenvector for all λ, and to
judge the exactness of the approximation by the function

dN (λ) := |(ξ̂N − λ)|λ〉N |2 = |cN (λ)|2
2N+2N!

HN+1(λ)2. (12)

It is important to note that these are neither eigenvectors nor eigenvalues. The index λ is
perhaps best referred to as a pseudo-eigenvalue; while there is a continuum of these, there
is of course only a finite number of eigenvalues. Analogues of these states have been briefly
considered for angle variables in [26].

5
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It is natural to demand the normalization N〈λ|λ〉N = 1 so that the length of |λ〉N does not
affect the limiting behaviour of dN (λ); one then obtains

dN (λ) = 1

2

HN+1(λ)2

HN (λ)H ′
N+1(λ) − HN+1(λ)H ′

N (λ)
.

This can be simplified using the identities

HN (λ)H ′
N+1(λ) − HN+1(λ)H ′

N (λ) = −HN+1(λ)2 d

dλ

[
HN (λ)

HN+1(λ)

]
and

HN (λ)

HN+1(λ)
= 1

2(N + 1)

H ′
N+1(λ)

HN+1(λ)
= 1

2(N + 1)

d

dλ
ln |HN+1(λ)|

to the remarkable form

dN (λ) = −(N + 1)

d2

dλ2

[
ln |HN+1(λ)|] . (13)

One can also express this as

1

dN (λ)
= d2

dλ2

[
ln

(
1

N+1
√|HN+1(λ)|

)]
, (14)

which immediately gives an asymptotic expression for large λ, since then HN+1(λ) ≈
2N+1λN+1. After differentiation, this means that dN (λ) ≈ λ2 for large λ, which makes sense:
one expects the vector |λ〉N to be an increasingly poor approximation for an eigenvector away
from the region with eigenvalues.

However, one can say much more about dN (λ): for instance, expression (13) does not
readily give much information, and it is not very practical for algebraic manipulation or
numerical evaluation. For such purposes, it is more convenient to use the expression

dN (λ) = 1

4

HN+1(λ)2

(N + 1)HN (λ)HN (λ) − NHN+1(λ)HN−1(λ)
. (15)

The behaviour of dN (λ) splits into two regions: it is oscillatory for small |λ| and quadratically
growing for large |λ|. Specifically, one can prove that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN (λ) = λ2 − 3N

2
+ N(5 − N)

4λ2
+ · · · (16a)

for λ >
√

2N + 1,

dN (λ) ≈ 1

2

1 + (−1)N+1 cos
(

2
√

2N + 3λ
(

1 − 1
6

λ2

2N+3 + · · ·
))

1 + cos
(

2√
2N+1

λ
(

1 + 1
12

λ2

2N+1 + · · ·
)) + O(N−1) (16b)

for λ <
√

2N + 1.

The function dN (λ), along with both these approximations, is shown in figure 1.
The first of these approximations can easily be expected since dN (λ) is a rational function

of λ; in fact, it is simply a Laurent series, valid for sufficiently large λ. As such, it can be
expressed as dN (λ) = ∑∞

k=0 αkλ
2−2k, where all the coefficients αk can be found either manually

(expressing HN+1(λ) as a sum of λ2 ((N + 1)HN (λ)HN (λ) − NHN+1(λ)HN−1(λ)) and terms
of O(λ2N ), and so on) or analytically, integrating around a large circle in the complex plane,
as

αk = 1

2π i

∮
λ2k−3dN (λ) dλ.

6
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6 4 2 2 4 6
λ

1

1

2

3

4

5
dN λ

Figure 1. The function dN (λ) and the approximations (16a), up to the constant term (dashed, red),
and (16b), with the series truncated as they are shown in the text (dotted, black), for N = 15.

30 20 10 10 20 30
Re λ

0.6

0.4

0.2

0.2

0.4

0.6

Im λ

Figure 2. Zeros of the Christoffel–Darboux kernel for the Hermite polynomials,∑N
n=0 Hn(λ)2/2nn!, on the complex λ plane, for N = 5, 10, 25, 50, 150 and 500. Care must

be taken since the scales on both axes do not coincide.

This reduces in turn to a sum of residues over the poles of dN (λ), which are exactly the zeros
of the Christoffel–Darboux kernel, expression (10). Since the kernel is a sum of squares, it is
never zero for real variables (a fact which is often used to prove interpolation theorems for
zeros of orthogonal polynomials) so the poles have nonzero imaginary parts.

However, despite the extensive attention to the Christoffel–Darboux kernel in the
orthogonal-polynomial literature [27], to the best of our knowledge there are no suitable
expressions or approximations for these zeros. It is clear, on the other hand, that these zeros
do have some additional structure, which can easily be seen by plotting them: they appear to
lie, with increasingly even spacing, on two complex-conjugate curves increasingly close to
the real axis as N increases. A plot of these zeros for N = 5, 10, 25, 50, 150 and 500 is shown
in figure 2.

The second approximation, (16b), correct to order O(N−1) uniformly for bounded λ, is
obtained from the approximation

e−x2/2Hn(x) = 2
n
2 + 1

4

√
n!(πn)−1/4(sin(φ))−1/2

×
[

sin

((
n

2
+ 1

4

)
(sin(2φ) − 2φ) + 3π

4

)
+ O(n−1)

]
,

7
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where x = √
2n + 1 cos(φ) and φ ∈ [ε, π −ε], found in [28, p. 201], by further approximating

the argument of the sine function using the Taylor series

sin(2φ) − 2φ = −π + 4√
2n + 1

x − 4

(2n + 1)3/2

x3

6
+ O

(
x5

n5/2

)
to obtain

e−x2/2Hn(x) ≈
√

2nn!
√

2√
πn

(
2n + 1

2n + 1 − x2

)1/4

× cos

(√
2n + 1x

(
1 − 1

6

x2

2n + 1
+ · · ·

)
+ n

π

2

)
.

One consequence is that the spacing of the zeros of dN (λ) (which give the eigenvalues
of ξ̂N) decreases as π/

√
2N + 1 for large N, and that this spacing is increasing even

as N increases. Furthermore, the region with zeros covers the increasingly large intervals
−√

2N + 1 � λ �
√

2N + 1.
One can then show that, given any real number λ, a positive number ε and an integer N0,

there exists an eigenvalue λ0 of ξ̂N with N � N0 such that |λ − λ0| < ε. This can in turn be
used to define an appropriate notion of the limit of the spectra σ (ξ̂N ), with the desired property
that the spectra tend to the spectrum of the full, infinite-dimensional, position operator ξ̂ :

lim
N→∞

σ (ξ̂N ) :=
∞⋂

k=0

∞⋃
N=k

σ (ξ̂N ) = R = σ (ξ̂ ), (17)

where the overline means topological closure in R.
This notion of a limit of a sequence of sets means that the points in the limit set are

arbitrarily close to sets of the sequence with arbitrarily large indexes, and it resembles the limit
superior [29, p. 16] of a sequence of sets, which omits the topological closure. Additional uses
for this definition can be easily found: for example, it is in this sense that the hyperboloids
x2 + y2 − z2 = ±a2 ‘tend to’ the cone x2 + y2 = z2 as the waist a tends to zero, and that the
ellipsoids x2 + y2 + z2/c2 = 1, when c → ∞ and they become increasingly elongated, ‘tend
to’ the cylinder x2 + y2 = 1.

Our definition (17) also allows the finite spectra of the truncated phase operators of Pegg
and Barnett (which cover N + 1 equally spaced points on the unit circle) to tend to the
complete unit circle, which is what one would expect from a phase operator. This is in contrast
to Pegg and Barnett’s assertion [22] that in the N → ∞ limit, the phase operator should have
only a countable number of eigenvalues: it is clearly dependent on the notion of limit used,
which should reproduce in the simpler example of the truncated quadratures ξ̂N the required
behaviour.

Another limit that deserves note is that of |λ〉N as |λ| 
 √
2N + 1, where the number-

basis components in (5) corresponding to |n〉 with n < N, which scale as 2nλn, are drowned
out by the |N〉 contribution. One therefore has, up to a phase, |λ〉N → |N〉 as λ → ±∞. This
limit will become apparent on the graphs of the wavefunctions 〈ξ |λ〉N in figure 3.

One further detail of the asymptotic behaviour of dN (λ) is noteworthy, and it relates
to the amplitude of the oscillations, which is basically independent of N: dN (λ) oscillates
sinusoidally from 0 to 1, instead of—as one might hope—tending uniformly to zero. This
means that for any real λ, there will always be values λ1 arbitrarily close to λ that will have
dN (λ1) = 1, with arbitrarily large N.

The fact that dN (λ1) = 1 = N〈λ1|λ1〉N can be seen as implying that |λ1〉N is as far away as
it can be from being an eigenvector, which would disqualify the curve λ �→ |λ〉N in HN from
describing approximate eigenvectors. However, this overlooks the fact that ξ̂N has a relatively

8



J. Phys. A: Math. Theor. 45 (2012) 395303 E Pisanty and E Nahmad-Achar

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(a) λ = −5

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(b) λ = −2

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(c) λ = 0

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(d) λ = 2

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(e) λ = 5

10 5 5 10
ξ

0.5

0.5

1.0

ξ λ N

(f) λ = 10

Figure 3. Wavefunctions 〈ξ |λ〉N as functions of ξ for N = 16 and the indicated values of λ.

large (operator) norm, and that one can find states such as |N〉, the last number-basis vector,
for which ‖(ξ̂ − λ)|N〉‖2 = λ2 + N

2 . Since |N〉 represents the wavefunction within HN with
arguably the largest position dispersion, it can be seen that the vectors |λ〉N are in fact rather
close to being position eigenvectors.

4. Wavefunctions and moments

As we mentioned at the end of last section, one qualitative measure of how good an
approximation to an eigenvector of ξ̂N is a given vector is the spread of its wavefunction.
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In this respect, one might hope that the vectors |λ〉N represent wavefunctions highly localized
around λ with small dispersion.

The wavefunctions can be found, again using the Christoffel–Darboux sum formula, now
in its bivariate form (9):

〈ξ |λ〉N = cN (λ)

N∑
n=0

Hn(λ)√
2nn!

〈ξ |n〉 = cN (λ)

N∑
n=0

Hn(λ)Hn(ξ )

2nn!

e−ξ 2/2

π1/4

= cN (λ)

2N+1N!

e−ξ 2/2

π1/4

HN+1(λ)HN (ξ ) − HN (λ)HN+1(ξ )

λ − ξ
.

If one chooses cN (λ) to be real and positive, then one obtains

〈ξ |λ〉N = e−ξ 2/2√
2N+1N!

√
π

1

λ − ξ

HN+1(λ)HN (ξ ) − HN (λ)HN+1(ξ )√
HN (λ)H ′

N+1(λ) − H ′
N (λ)HN+1(λ))

. (18)

The graphs of selected wavefunctions are shown in figure 3; however, it is more instructing
to see the wavefunctions change with λ in a continuous animation (see supporting material
online, available from http://stacks.iop.org/JPhysA/45/000000/mmedia).

Seeing now that the wavefunctions are highly localized, it is interesting to calculate the
expected value of the position and its dispersion. There is an initial question of whether to
use the truncated position, ξ̂N , or its full version, ξ̂ , but it turns out that their expected values
coincide: since |λ〉N is in HN , the range of �̂N ,

N〈λ|ξ̂ |λ〉N = N〈λ|�̂N ξ̂ �̂N |λ〉N = N〈λ|ξ̂N |λ〉N .

This is convenient, since we know already from (7) the action of ξ̂N on the vectors |λ〉N . We
thus have

N〈λ|ξ̂N |λ〉N = N〈λ|
[
λ|λ〉N − 1

2

cN (λ)√
2NN!

HN+1(λ)|N〉
]

= λ − 1

2

cN (λ)√
2NN!

HN+1(λ) ·N〈λ|N〉

= λ − 1

2

|cN (λ)|2
2NN!

HN+1(λ)HN (λ)

= λ − 1

2

HN+1(λ)HN (λ)

(N + 1)HN (λ)2 − NHN+1(λ)HN−1(λ)
.

In particular, the expected value 〈ξ̂N〉 coincides with the pseudo-eigenvalue λ not only on the
zeros of HN+1, when it should since |λ〉N is then an eigenvector, but also on the zeros of HN .
This is important since these second values are interspersed with the first and therefore occur
on the peaks of the oscillations of dN (λ); a further indication that the treatment of |λ〉N as an
approximate eigenvector is appropriate.

Approximating the expression for the expected value of the position using the same
methods that were used to approximate dN (λ) by expressions (16), one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ξ̂〉 = N

λ
+ N(N − 2)

2λ3
+ · · · (19a)

for λ >
√

2N + 1, and

〈ξ̂ 〉 ≈ λ −
sin

(
λ√

2N+2

(
1 + 1

6
λ2

2N+2 + · · · )) + (−1)N sin
(
2
√

2N + 2λ
(
1 + 1

6
λ2

2N+2 + · · · ))
√

2N + 1
[
1 + cos

(
2√

2N+1
λ
(
1 + 1

12
λ2

2N+1 + · · · ))]
for λ <

√
2N + 1. (19b)
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Figure 4. Expected value 〈ξ̂N〉 as a function of λ for N = 16, with the approximations (19a) and
(19b) shown dashed and dotted, respectively.

The graph of N〈λ|ξ̂N |λ〉N as a function of λ is shown, along with both the above
approximations (with the series truncated as shown above), in figure 4.

Since the amplitude of the oscillations in (19b) does decrease uniformly, in the
λ  √

2N + 1 regime, one can consider λ to be an excellent approximation to the expectation
value 〈ξ̂N〉. In general, N〈λ|ξ̂N |λ〉N covers all of the values between the smallest and largest
eigenvalues of ξ̂N , i.e. the first and the last zeros of HN+1 (which is approximately the region
−√

2N + 1 < λ <
√

2N + 1) linearly in λ except for oscillations whose amplitude tends to
zero, although near the edges of this interval it can occur that more than one λ correspond to
the same expectation value, which happens because the amplitude of the oscillations increases
with λ.

The decay of 〈ξ̂N〉 to zero as λ → ∞ is also interesting in its own right, since it represents
the fact that in that regime, the states default to the last number ket, |N〉, which has an expected
value 0 for the position.

We close this section by giving an explicit expression for the position dispersion. This
is complicated by the fact that the second moments of ξ̂ and ξ̂N do not coincide, since
�̂N ξ̂ 2�̂N �= ξ̂ 2

N . In fact, one obtains

N〈λ|ξ̂ 2|λ〉N = N〈λ|�̂N ξ̂ �̂2
N ξ̂ �̂N |λ〉N + N〈λ|�̂N ξ̂ (1 − �̂N )2ξ̂ �̂N |λ〉N

= N〈λ|ξ̂ 2
N |λ〉N + N + 1

2
|〈N|λ〉N |2.

We therefore calculate

N〈λ|ξ̂ 2
N |λ〉N = N〈λ|ξ̂N[λ|λ〉N − 1

2

cN (λ)√
2NN!

HN+1(λ)|N〉]

= λ2 − 1

2

|cN (λ)|2
2NN!

HN+1(λ)(λHN (λ) + NHN−1(λ)),

which gives, for the position uncertainty,

N〈λ|(ξ̂N − 〈ξ̂N〉)2|λ〉N = N〈λ|ξ̂ 2
N |λ〉N − N〈λ|ξ̂N |λ〉2

N

= dN (λ)

(
1 − |cN (λ)|2

2NN!
HN (λ)2

)
.

11
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Figure 5. Position dispersion (ξ̂N )2 as a function of λ for N = 8, along with the (dashed and
dotted) approximations (20).

This can be approximated by the expressions⎧⎪⎨
⎪⎩

(ξ̂N )2 = N

2
− N(N + 3)

4λ2
+ · · · for λ >

√
2N + 1, and (20a)

(ξ̂N )2 = dN (λ) + O(N−1) for λ <
√

2N + 1, (20b)

which are shown in figure 5.
The full-position dispersion, (ξ̂ )2, is slightly more complicated. As said above, it differs

in one term from the truncated-position dispersion, and can therefore be written as

N〈λ|(ξ̂ − 〈ξ̂〉)2|λ〉N = dN (λ)

(
1 − |cN (λ)|2

2NN!
HN (λ)2

)
+ N + 1

2

|cN (λ)|2
2NN!

HN (λ)2. (21)

Because of the N + 1 factor, the last term does not tend to zero as N → ∞ and is therefore not
negligible. Furthermore, since the extra term is proportional to HN (λ) and the original dN (λ)

is proportional to HN+1(λ), in the oscillatory region the two contributions are out of phase
and therefore interfere constructively to make an (almost) constant function close to λ = 0.
As λ grows, the differing frequencies of oscillation of both terms make them interfere and
(ξ̂ )2 does show some oscillations. This can be seen in figure 6, and is made precise by the
approximations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ̂ )2 = 2N + 1

2
− N(N + 2)

2λ2
− N(2N2 + 2N − 9)

4λ4
+ · · ·

for λ >
√

2N + 1, and (22a)

(ξ̂ )2 =
1 + (−1)N sin

(
2
√

2N + 2λ
(
1 − 1

6
λ2

2N+2 + · · · )) sin
(

λ√
2N+2

(
1 + 1

6
λ2

2N+2 + · · · ))
1 + cos

(
2√

2N+1
λ
(
1 + 1

12
λ2

2N+1 + · · · ))
for λ <

√
2N + 1. (22b)
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Figure 6. Dispersion of the (non-truncated) position, (ξ̂ )2, for N = 16, together with the
approximations (22a), dotted, and (22b), dashed. At λ = 0 the dispersion is 1

2 , independent of N,
and there the function is increasingly flatter as N → ∞.

For large λ, both dispersions are bounded, which they must be since they are the
expectation values of finite-dimensional operators. It is interesting to note that the full-position
operator dispersion, (ξ̂ )2, seems to be bounded from below, in the sense that (ξ )2 → 1

2
uniformly in any compact set λ ∈ [−λ0, λ0], which contrasts with the fact that ξ̂ has eigenstates
with zero dispersion. Although the latter do have an infinite norm, it is well known that squeezed
states with finite norm and position dispersion below the Heisenberg limit of 1

2 exist.
For completeness, we include here some additional results. The inner product between

different (pseudo-)eigenvectors |λ〉N is given by

N〈λ′|λ〉N = cN (λ′)∗cN (λ)

2N+1N!

HN+1(λ)HN (λ′) − HN (λ)HN+1(λ
′)

λ − λ′ ; (23)

in particular, it is zero when both λ and λ′ are roots of HN+1, but also when they are roots of
HN , which is a consequence of the fact that they are eigenstates of ξ̂N−1, and are therefore well
treated as pseudo-eigenstates of ξ̂N . The matrix element

N〈λ′|ξ̂ |λ〉N = cN (λ′)∗cN (λ)

2N+1N!

λ′HN+1(λ)HN (λ′) − λHN (λ)HN+1(λ
′)

λ − λ′ (24)

is also of interest; the matrix element N〈λ′|π̂ |λ〉N can also be calculated.

13
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5. The Jacobi matrix

In this section we briefly explore some mathematical results related to the work described in
this paper. Most importantly, we retake the expression for the characteristic polynomials of
the truncated position, ξ̂N , given in (4), and which can be written as

HN+1(λ) = 2N+1 det(ξ̂N + λ) = 2N+1 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1√
2

0 · · · 0 0
1√
2

λ
√

2√
2

· · · 0 0

0
√

2√
2

λ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ
√

N√
2

0 0 0 · · ·
√

N√
2

λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

This can now be turned around and viewed as a representation of the Hermite polynomials.
This representation in terms of the determinant of a tridiagonal matrix exists for all families
of orthogonal polynomials and is known in the special-function literature as the Jacobi matrix
representation [30]. Jacobi himself used this expression, as well as the explicit diagonalization
given above of the tridiagonal matrix, to study Gaussian quadratures [31], that is, the
approximation of the integral of a function by a finite sum of evaluation on a number of points.
These points are the zeros of appropriately chosen polynomials, which can be efficiently
evaluated by this method since it uses the algorithms of linear algebra.

An interesting application of this development comes if one couples expression (25) with
the Cayley–Hamilton theorem, which states that every matrix satisfies its own characteristic
polynomial. This means that the truncated quadratures ξ̂N are matrix solutions to the equation

HN+1(X ) = 0, (26)

which is not trivial, particularly when one considers that for large N, the real solutions are
known to exist but there is no known simple or elementary exact formula for them.

Furthermore, since each zero of HN+1 appears exactly once as an eigenvalue of ξ̂N , this
means that the Hermite polynomials are not only the characteristic polynomials of the matrices
ξ̂N , but they are also their minimal polynomials (the minimal polynomial p of a matrix A is
the unique monic polynomial of minimal degree for which p(A) = 0). Although there are
other matrix zeros of (26), the condition of having the Hermite polynomials as a minimal
polynomial specifies the truncated quadratures ξ̂N uniquely, up to matrix equivalence.

Finally, the work in this paper may be used to obtain results for the Hermite polynomials
which would be hard to obtain in other ways. We give one example: by numbering
the zeros λk of HN+1(λ) = 0 with k = 0, 1, . . . , N, we obtain an orthonormal basis
{|λk〉N : k = 0, 1, . . . , N}, in terms of which the orthonormalization of the number kets
reads

δmn = 〈m|n〉 =
N∑

k=0

〈m|λk〉N N〈λk|n〉 = 1√
2mm!2nn!

N∑
k=0

|cN (λk)|2Hm(λk)Hn(λk),

an expression in which the sum is over all the zeros of HN+1 and would therefore be particularly
hard to obtain by ordinary means.

6. Conclusions

We have obtained the spectrum of the position quadrature operator ξ̂N for a finite number
N of photons in terms of the zeros of Hermite polynomials, as well as its eigenvectors in
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terms of lower degree Hermite polynomials evaluated on these zeros. The normalization of the
eigenstates is given through the Christoffel–Darboux kernel, and a regular structure for these
is shown numerically. Approximate eigenstates for ξ̂N were naturally defined, which represent
highly localized wavefunctions centred around any value between the least and greatest zeros
of HN+1. By using an appropriate notion of limit for these spectra, in the sense that they tend
to the full spectrum of the infinite-dimensional position operator ξ̂ , we showed that the finite
spectrum of the truncated phase operators tends to the complete unit circle, as one would
expect. The same procedure can be followed for any arbitrary field quadrature.
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[28] Szegö G 1975 Orthogonal Polynomials (Colloquium Publications vol 23) 4th edn (Providence, RI: American

Mathematical Society)
[29] Halmos P 1974 Measure Theory (New York: Springer)
[30] Andrews G E, Askey R and Roy R 1999 Special Functions (Encyclopedia of Mathematics and Its Applications

vol 71) (Cambridge: Cambridge University Press)
[31] Gautschi W 2004 Orthogonal Polynomials, Computation and Approximation (Numerical Mathematics and

Scientific Computation) (Oxford: Oxford University Press)

16

http://dx.doi.org/10.1103/PhysRevA.41.3427

	1. Introduction
	2. Quadrature spectra
	3. Approximate eigenvectors
	4. Wavefunctions and moments
	5. The Jacobi matrix
	6. Conclusions
	Acknowledgments
	References

