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Principal frequency of an ultrashort laser pulse
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We introduce an alternative definition of the main frequency of an ultrashort laser pulse—the principal
frequency ωP. This parameter is complementary to the most accepted and widely used carrier frequency ω0.
Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only a few
cycles of the carrier wave, corresponding to a spectral bandwidth �ω covering several octaves, ωP describes, in a
more precise way, the dynamics driven by these sources. We present examples where, for instance, ωP is able to
correctly predict the high-order harmonic cutoff independent of the carrier envelope phase. This is confirmed by
solving the time-dependent Schrödinger equation in reduced dimensions, supplemented with the time-analysis of
the quantum spectra, where it is possible to observe how the subcycle electron dynamics is better described using
ωP. The concept of ωP, however, can be applied to a large variety of scenarios, not only within the strong-field
physics domain.
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I. INTRODUCTION

During the past two decades we have been witness to
a constant development of a varied set of ultrashort laser
pulses, with temporal widths well below two optical cycles.
In general, the main objective of these sources is the temporal
study of diverse physical phenomena on their native temporal
scale. The techniques that have been developed to scrutinize
dynamics on this territory are based on delicate control of
strong-field laser-atom interactions and configure the core of
what is known as attosecond spectroscopy. The spectral range
of those pulses is very broad, covering both the THz [1–3], and
infrared and visible [4–7], as well as the XUV [8–12] regions
of the electromagnetic spectrum.

The driving sources described above also allow the co-
herent control of various quantum systems, particularly the
standard two-level system, widely used as a toy model for
different physical processes. The precise and high-speed
manipulation over the population of quantum states has
important applications in, e.g., quantum information and spin-
tronics, among others [13]. In addition, the generation of
intense ultrashort laser pulses in the few-cycle, single-cycle,
and subcycle domains has enabled the study of strongly non-
linear light-matter interactions and given rise to novel and
fascinating phenomena [14]. Maybe the most important exam-
ple is the so-called isolated attosecond pulses (IAPs). These
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sources are the workhorse to tackle the dynamics of electrons
under strong fields in its natural temporal, attosecond, scale
[11,15]. IAPs are obtained from high-harmonic generation
(HHG) using a variety of spectral postprocessing approaches
[16–20].

HHG is an extremely nonlinear optical process in which
a strong laser field interacts with atoms, molecules, and,
recently, bulk materials, and drives the production of high-
frequency ultrashort bursts of coherent electromagnetic radia-
tion [11,15]. This emission possesses a set of distinct features,
namely, (i) a steadying decrease of the first harmonics of the
driving field yield, (ii) a broad plateau, that can cover up to
thousands of harmonic orders of the original driving field, and
(iii) a cutoff, where the spectrum suddenly terminates. The
underlying physics of the HHG in atoms and molecules can
be traced out from a sequence involving three steps, which can
be summarized as follows: (i) the laser ionizes the target via
tunnel ionization, (ii) the released electron travels in the laser
continuum gaining kinetic energy and, when the laser electric
field reverses its direction, (iii) the electron returns back to the
parent ion, where it recombines, releasing its kinetic energy
as a high-energy photon [20].

The HHG phenomenon can be modeled using a wide range
of approaches, from classical-based schemes [17,20] to inten-
sive numerical computations involving the numerical solution
of the time-dependent Schrödinger equation (TDSE), both in
one or several spatial dimensions [21]. Yet, the quantitative
schemes that most closely follow the overall intuition are
the so-called quasiclassical methods, with the strong-field
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approximation (SFA) being the most prominent exponent
[17,18]. Here the emission amplitude key ingredient is a
path-integral sum over discrete emission events. Invoking the
SFA, the well-known 3.17-law, which correctly predicts the
HHG cutoff law, can be easily obtained [22]. The SFA has
been applied to a large variety of strong-field processes with
undeniable success (for a recent historical review, see [18]).

The synthesis of ultrashort pulses has advanced quickly
in recent years. Particularly, the generation of high-energy
single- and sub-cycle IR laser pulses has been experimen-
tally verified, through the combination and manipulation of
the spectral content of laser sources of different wavelengths.
The current generation of these pulses possesses tremendous
technological challenges, due to, amongst other difficulties,
the synchronization of their different sources with sub-fs
temporal resolution [23–30]. Recently, the generation of a
53-attosecond x-ray pulse was demonstrated using HHG in
noble gases driven by a midinfrared few-cycle laser source
[31].

When working with ultrashort laser pulses in the few-cycle
regime, it is well known that the so-called carrier-envelope
phase (CEP), φ, plays an instrumental role in the resulting
laser-matter interaction processes driven by those sources.
This is because the pulse envelope experiences appreciable
changes within an optical cycle of the carrier wave. In this
way, for instance, the maximum field amplitude of a sine-like
pulse, typically characterized by φ = 0, is largely different
than that of a cosine-like pulse, where φ = π/2. Furthermore,
it has been demonstrated that, not only the CEP, but also
the pulse width is relevant in certain strong-field processes
[32–35].

In this work we introduce an alternative definition of the
main frequency of an ultrashort laser pulse. This parameter,
which we name principal frequency ωP, appears to be much
more appropriate than the standard definition, the carrier fre-
quency ω0, to correctly characterize the interaction of these
pulses with matter. Using ωP as the frequency that drives
the dynamics, we are able to give a better interpretation of
previously published results, as well as provide more reliable
predictions of strong-field processes outcomes. Its definition
is based on a particular way to weight the spectral content of
the laser pulse electric field and it is adequately justified if we
resort to the particle nature of light, i.e., if we consider that
light is composed of light quanta (photons).

This article is organized as follows. In Sec. II, we present
the mathematical foundations of the principal frequency ωP.
We present a set of examples based on different definitions of
the laser electric field. We show how ωP varies as a function
of the bandwidth of the pulses for three archetypal cases. Fur-
thermore, we show that there exists a correlation between the
positions of the maxima and minima of the laser pulse’s elec-
tric field with the principal period, defined as TP = 2π/ωP. In
Sec. III we use the definition of ωP to characterize the HHG
spectra of an atom driven by a series of few-cycle laser pulses.
For the computation of the HHG spectra, we use both quantum
mechanical and classical approaches. These two complemen-
tary schemes allow us to disentangle the underlying physics
of the HHG process. We end our contribution in Sec. IV pre-
senting our conclusions together with a brief outlook. Atomic
units are used throughout the article unless otherwise stated.

II. PRINCIPAL FREQUENCY

A. Definition

The most accepted definition of carrier frequency, ω0, of
an ultrashort laser electric-field pulse E (t ) is the central fre-
quency of the modulus of its Fourier transform |E (ω)|, if the
spectrum is symmetric. However, if the spectral content is
more complex, ω0 results from an integral over the density
distribution ρ(ω) = S(ω), where S(ω) = |E (ω)|2 is the spec-
tral power, i.e.,

ω0 =
∫ ∞
−∞ ωS(ω)dω∫ ∞
−∞ S(ω)dω

. (1)

If we think of laser pulses born in an optical cavity as a fre-
quency comb with n longitudinal modes, each with individual
frequencies ωi, considering that the integral in the denomina-
tor

∫ ∞
−∞ S(ω)dω defines the total energy of the pulse Ep, we

can write this term as a sum over n modes as
∑

i Si(ωi ) = Ep.
Here, Si(ωi ) is the energy of the i mode, which can be written
in terms of the number of photons as Si(ωi ) = h̄ωini. There-
fore, we can interpret the above definition as an average over
the energy Si(ωi ) of each mode:

ω0 =
∑

i ωiSi(ωi )∑
i Si(ωi )

. (2)

Let us suppose, for example, that we have two modes with
frequencies ω1 and ω2 in the frequency comb, with energies
S1(ω1) = S2(ω2). Independent of the values of the frequencies
ω1 and ω2, the carrier frequency ω0 can be easily calculated
as ω0 = (ω1 + ω2)/2, even if ω1 � ω2. In other words, if
the spectrum of the pulse S(ω) is symmetrical, the carrier
frequency is independent of the pulse bandwidth.

Nothing prevents us from given different weights to ω1 and
ω2 in the average. For instance, one reasonable choice would
be to suppose that more energetic photons with higher fre-
quencies have more weight in the average. In this way, the new
density function takes the following form: ρ(ω) = ωS(ω).

Thus, our principal frequency ωP results:

ωP =
∫ ∞
−∞ ω2S(ω)dω∫ ∞
−∞ ωS(ω)dω

. (3)

From the above definition we can observe that ωP gives more
weight to photons with greater frequencies (higher energies).
This is so because of the actual definition of the new density
function ρ(ω). Let us now see what this means in the temporal
domain.

The electric field of an ultrashort laser pulse can be written
as E (t ) = f (t )eiω0t eiφ , where f (t ), ω0, and φ are the pulse
envelope, the carrier frequency, and the so-called carrier-
enveloped phase (CEP), respectively. If we take Re[E (t )] = 0,
we can find the zeros of E (t ), i.e., the times where E (t ) = 0.
As is well known, these zeros are located at nπ/ω0 and
(2n + 1)π/2ω0 for sine-like and cosine-like pulses, respec-
tively, and are spaced by π/ω0. Here, n = 0, 1, . . .. But what
happens with the position of the maxima and minima of the
field E (t )? For long pulses, i.e., when the temporal width
τW is τW � T0, where T0 = 2π/ω0 is the carrier period, the
envelope in the central region varies slowly and the maxima
and minima are spaced by T0/2. However, if τW is of the order
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of T0, i.e., τW ∼ T0, the situation changes considerably. For
this case, it is easy to see that the maxima and minima of
the field E (t ) depends now both on the envelope f (t ) and
the argument of the phase eiω0t eiφ . This simple conclusion is
instrumental, if we consider that the interaction of ultrashort
pulses with matter is dominated by these maxima and minima,
and not by the zeros of E (t ).

In the next section we show how ωP is correlated with
the positions of the maxima and minima of the electric field
E (t ), for different cases, each of them with different spectral
content.

B. Analysis

We start our analysis by considering the following fields in
the spectral domain:

ER(ω) = E0 rect
(ω − ω1

�ω

)
, (4a)

E2R(ω) = E0 rect

(
ω − ω1 + δω

�ω

)

+ E0 rect

(
ω − ω1 − δω

�ω

)
, (4b)

EG(ω) = E0 e−( ω−ω1
�ω )2

rect

(
ω − 5ω1

9ω1

)
, (4c)

where E0 is the peak field strength and the function rect(x/x0)
is the so-called rectangle function defined as

rect(x/x0) =
{

1 if |x| � x0/2,

0 if |x| > x0/2.
(5)

The spectra of Eqs. (4a) and (4c) are centered at the fre-
quency ω1; meanwhile, Eq. (4b) is the sum of two carrier
waves with different frequencies, ω1 + δω and ω1 − δω. In
all the cases �ω characterizes their respective spectral band-
widths.

By taking the Fourier transform we find the electric fields
in the temporal domain, i.e.,

ER(t ) = E0
�ω√

2π
eiω1t sinc

(
�ω t

2

)
, (6a)

E2R(t ) = E0
�ω√

2π
eit (ω1−δω)sinc

(
�ω t

2

)

× (1 + e2iδωt ), (6b)

EG(t ) = E0
i�ω e−( �ωt

2 )2
eiω1tU (t )

2
√

2
, (6c)

where U (t ) is given by

U (t ) = erfi

(
�ωt

2
− i

ω1

2�ω

)

−erfi

(
�ωt

2
+ i

17ω1

2�ω

)
, (7)

and sinc and erfi are the sinc function sinc(x) = sin(x)/x and
the imaginary error function, respectively.

Note that the spectra of the first two fields, Eqs. (4a) and
(4b) are symmetric, while the third, Eq. (4c), is asymmet-
ric. This point is important because for the fields ER(t ) and

E2R(t ) the carrier frequency ω0 is equal to ω1, while for the
field EG(t ) we have ω0 �= ω1. Furthermore, the envelope of
Eq. (6a), as well as the one of Eq. (6b), becomes the sinc func-
tion. Finally, for Eq. (6c) the envelope results in a Gaussian
function multiplied by the function U (t ), that is composed as
a sum of two imaginary error functions erfi(x) with different
arguments.

The fields defined above represent three different situa-
tions. The field ER(t ) is the most common expression for an
ultrashort pulse, considering its spectral content is continu-
ous. The spectral function rect( ω−ω1

�ω
) has the advantage of

possessing a limited bandwidth, given by �ω/2 < ω1, which
prevents the pulse having spectral content near zero frequency.
This is particularly relevant in the few-cycle regime, where
other envelopes typically used, e.g., Gaussian or sech, are
unable to fulfill this requirement. Near-zero frequencies are
correlated with the “zero-area pulse problem” and are in-
compatible with the paraxial approximation used to focus
the laser beams. In the E2R(t ) field we observe the so-called
frequency beat, considering we are summing up two carriers
with frequencies separated by δω. These pulses have been
already implemented in the laboratory, and possess interesting
properties [27,29,36]. The last one, EG(t ), was chosen as a
typical example of a field with an asymmetric spectrum and it
is a relevant example wherein to test our hypothesis, since its
carrier frequency ω0 is bandwidth dependent.

In Figs. 1(a)–1(c) we plot the spectral power S(ω) of the
fields defined in Eqs. (4a)–(4c), for E0 = 1. All the cases
are centered at the same frequency, ω1 = 2π . The spectral
bandwidth of both ER(ω) and EG(ω) is �ω = π ; meanwhile,
for E2R(ω) each “subspectrum” has a bandwidth �ω = π/2.
For the latter δω = π/2. The temporal counterparts, ER(t ),
E2R(t ), and EG(t ), are depicted in Figs. 1(d)–1(f), where the
thick blue (thin red) line defines a cosine(sine)-like pulse.

Through the definition of the principal frequency ωP,
Eq. (3), we determine the principal period TP, TP = 2π/ωP. In
this way, we can analyze how the period T of the pulses ER(t ),
E2R(t ), and EG(t ), represented as twice the distance between
two adjacent maxima and minima in the temporal central
region, is related to TP and the changes of the bandwidth �ω.
In Fig. 1(d) we show how TP/2 defines more precisely the
temporal distance between two adjacent maxima and minima
(exemplified for the cos-like pulse); meanwhile, T0/2 is better
suited for the position of the field zeros (exemplified for the
sin-like pulse).

Let us now compute how ωP changes as a function of
the bandwidth �ω. For ER(ω) it is possible to find a simple
analytical expression; meanwhile, for both E2R(ω) and EG(ω)
we deal with its numerical calculation. For the case of ER(ω)
we have

ωP(�ω,ω0) =
∫ ∞
−∞ ω2S(ω)dω∫ ∞
−∞ ωS(ω)dω

= ω0 + �ω2

12ω0
.

(8)

This last relationship between ωP, �ω, and ω0 (note that for
this case ω1 = ω0) has been shown in [34], for the case where
a few-cycle rf pulse interacts with a two-level system.
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FIG. 1. (a)–(c) Spectral power S(ω) of the fields ER(ω), E2R(ω), and EG(ω) for E0 = 1. All the cases are centered at the same frequency,
ω1 = 2π . The spectral bandwidth of both ER(ω) and EG(ω) is �ω = π ; meanwhile, for E2R(ω) each “subspectrum” has a bandwidth �ω =
π/2. In (b) δω = π/2. The blue solid (red dashed) line represents the ωP (ω0) frequency (see the text for details). (d)–(f) Normalized time-
dependent fields ER(t ), E2R(t ), and EG(t ). Thick blue (thin red) line defines a cosine(sine)-like pulse. In (e) the dashed (dotted) line corresponds
to the temporal distance between two consecutive zeros (maximum and minimum) of the field for the sin(cos)-like pulses, i.e., T0/2 and TP/2,
respectively (see the text for details).

In Fig. 2 we show how the principal period TP changes
as function of the bandwidth �ω. The procedure to find the
values of TCOS and TSIN from the different cases is as follows.
Starting at t = 0 we search the position of a nearest minimum.
If we define as tM the time where this minimum is located, for
a cosine-like pulse we can compute the period TCOS as TCOS =
2tM . Likewise, for a sine-like pulse it becomes TSIN = 4tM .
Figure 2(a) depicts the results for ER(t ). The dashed green
line represents TP computed as TP = 2π/ωP; meanwhile, the
thick blue (thin red) solid line corresponds to the TCOS (TSIN)
extracted for the cosine(sine)-like pulses using the procedure
explained above. We include the value T0 = 2π/ω0 (dotted vi-
olet line), which is constant and equal to the unity for this case
because the spectrum ER(ω) is symmetrical. We can observe
that TP appears to be a much more reliable quantity to predict
the temporal distance between maxima and minima, for both
cos- and sine-like pulses, and in a broad range of bandwidths.
In Fig. 2(b) we plot the results for E2R(t ). Here, as well, we
find an excellent agreement between the maxima and minima
positions predicted by TP and those computed directly from
the time-dependent field. Interestingly, for �ω = 0, where the
field results in a sum of two continuous waves with frequen-
cies ω0 − δω and ω0 + δω, TP allows us to accurately find the
positions of the maxima and minima. Finally, in Fig. 2(c),
we illustrate the case of EG(ω). In this example, T0 changes
mainly due to the wide bandwidth of EG(ω). Nevertheless,
the positions of the maxima and minima computed using TP

are much closer to those extracted from the fields than the
ones calculated starting from T0. We should note, however,
that the agreement is not so good as in the previous cases. For

asymmetrical pulses, as is this case, it is possible to show that
an improvement in the prediction of the maxima and minima
positions can be achieved by changing S(ω) by S(ω)1/2 in
the definition of ωP, Eq. (3), although this choice is relatively
difficult to justify from first principles.

III. RESULTS AND DISCUSSION

In this section we use some of the pulses previously
described to drive an atomic system and characterize the
high-order harmonic generation (HHG) spectra in terms of
the principal frequency ωP. As examples, we employ both the
ER(t ) and E2R(t ) fields to generate HHG in an hydrogen atom
and simulate the dynamics through the numerical integration
of the one-dimensional time-dependent Schrödinger equation
(1 D-TDSE). Recently, a theoretical investigation using sinc-
shaped pulses for both HHG and the construction of a single
attosecond pulse was presented [37].

A. ER(t ) fields

To perform the numerical simulations, three values of
the bandwidth �ω were chosen for the ER(t ) fields, namely
�ω = π , �ω = 2π , and �ω = 3π in units of ω0, which we
take corresponding to a laser wavelength of λ0 = 2000 nm,
both for the sine- and cosine-like fields. Taking into account
the definition of full width at half maximum (FWHM), we can
find its value starting from the fields expression, Eq. (6a), as
FWHM = 5.564/�ω. In this way, the corresponding FWHM
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FIG. 2. Principal period TP as a function of the pulse bandwidth
�ω for (a) ER(t ), (b) E2R(t ), and (c) EG(t ). In all the cases: dotted
violet line, T0 = 2π/ω0 [note that for the case of EG(t ) pulses, ω0

depends on �ω]; dashed green line, TP computed from TP = 2π/ωP;
thick blue (thin red) solid line, TCOS (TSIN) extracted for the time-
dependent cosine(sine)-like pulses (see the text for details).

result in 1.77 opt. cycles, 0.885 opt. cycles, and 0.59 opt.
cycles, for �ω = π , �ω = 2π , and �ω = 3π , respectively.

For all cases, the peak amplitude of the field was held
fixed at E0 = 0.053 a.u., which corresponds to a laser intensity
of I = 1 × 1014 W/cm2. For cosine-like pulses, this value is
reached in the central part of the pulse no matter its band-
width. On the contrary, for sine-like pulses, the maximum
amplitude of the field decreases, relative to the maximum of
the envelope, as the pulse duration gets shorter; therefore, in
order to keep the maximum value of the field at E0 = 0.053
a.u., we multiply the field amplitude by different scaling fac-
tors. In this way, taking into account that the HHG cutoff
scales as Iλ2, any decrease in the maximum harmonic photon
energy is due to a change in the pulse wavelength or frequency
and not to the peak amplitude of the field, a product of the tem-
porary shortening. In all the cases, we use a laser wavelength
λ0 = 2000 nm and a hydrogen atom as a target (IP = 0.5 a.u.).

The different cos- and sine-like pulses are plotted in
Figs. 3(a) and 3(b), respectively. The dotted red, dashed
green, and solid blue lines correspond to pulses with a band-
width of �ω = π , �ω = 2π , and �ω = 3π , respectively.
Taking into account Eq. (8), the principal frequency of these
pulses takes the following values: ωP(π ) = 2π (1 + 1/48) ≈
1.02ω0, ωP(2π ) = 2π (1 + 1/12) ≈ 1.08ω0, and ωP(3π ) =
2π (1 + 3/16) ≈ 1.19ω0. For these ωP the associated wave-
lengths, thus, result in λP(π ) = λ0/1.02, λP(2π ) = λ0/1.08,
and λP(3π ) = λ0/1.19, respectively.

Figures 3(c) and 3(d) show the respective harmonic spectra
for the pulses of Figs. 3(a) and 3(b), obtained solving the 1D-
TDSE (for details about the numerical implementation see,
e.g., Ref. [38]). The HHG for cosine-like pulses [Fig. 3(c)]
show two distinguishable plateaus in all the cases, with their
corresponding cutoffs. The most energetic one, which corre-
sponds to an energy given by I0λ

2
0, is marked with a dashed

black line. Let us note that for all the cases this cutoff has
the same photon energy (around 130 eV). On the contrary,
the photon energy values for the less energetic cutoffs depend
on the different pulses and decrease as the pulses become
temporarily narrower.

To explain this behavior, we perform a time-frequency
analysis of the quantum mechanical computed HHG spec-
tra. This tool has proven to be very powerful to estimate
the radiation emission times in atoms and molecules and to
discriminate the different classical electron trajectories. Fur-
thermore, in this way we are able to visualize which temporal
regions of the pulses correspond to the HHG cutoff. In short,
starting with the quantum dipole acceleration a(t ), we apply
the so-called Gabor transform defined as

aG(
, t ) =
∫

dt ′a(t ′)
exp[−(t − t ′)2/2σ 2]

σ
√

2π
exp(i
t ′), (9)

where the integration is usually taken over the pulse duration
and σ is chosen in a way to achieve an adequate balance
between the time and frequency resolutions (typically σ =
1/3ω, with ω being the central frequency of the laser pulse).
We then plot |aG(
, t )|2 as a function of the time and electron
energy Ek (note that in atomic units, where h̄ = 1, Ek = 
).
The results are shown in Figs. 4(a)–4(c), where we use a
log scale for |aG(
, t )|2. Additionally, we superimpose the
electron kinetic energies at the recombination time as a func-
tion of the ionization (white dots) and recombination times
(black dots) calculated classically, using Newton’s equations
of motion (for more details see, e.g., Ref. [39]).

From this analysis we observe that the most energetic cut-
offs (represented with a red solid line with arrows) originate
in the temporal region I-II of the pulse [see Fig. 3(a)]. This
means that the electron is ionized in region I and recombines
in region II. On the contrary, the less energetic ones originate
in the region II-III of the pulse [see the green dashed line
with arrows in Figs. 4(a)–4(c)], i.e., the electron is ionized in
region II and recombines in region III. Let us notice that the
peak amplitude of the field that ionizes the atom in region I is
smaller than the one that does so in region II. This makes the
probability of ionization recombination in region I-II lower
than the one in region II-III [40]. Furthermore, the classical
analysis allows us to see what is the excursion time of the

053124-5



ENRIQUE G. NEYRA ET AL. PHYSICAL REVIEW A 103, 053124 (2021)

FIG. 3. Cosine-like (a) and sine-like (b) ER(t ) pulses for different bandwidths �ω. The dotted red, dashed green, and solid blue lines
correspond to pulses with a bandwidth of �ω = π , �ω = 2π , and �ω = 3π in units of ω0, which we take corresponding to a laser wavelength
of λ0 = 2000 nm, respectively. The labels I–III denote the ionization and recombination regions (see the text for more details). HHG spectra
for the cosine-like (c) and sine-like (d) pulses plotted in panels (a) and (b), respectively. The vertical lines correspond to the different HHG
cutoffs (see the text for more details).

electron in the continuum for these two different temporal
regions, I-II and II-III.

In the case of sine-like fields, the features of the har-
monic spectra are as follows. An extended plateau, with a
clear and single cutoff, is observed in the different spectra
[Fig. 3(d)], which decreases as the pulse temporarily becomes
shorter. The time-frequency analysis of these spectra is shown
in Figs. 4(d)–4(f), respectively. For all the cases, the most
probable ionization-recombination event, indicated by a green
dashed line with arrows, occurs at the central part of the
pulse, i.e., the electron is ionized in region I and recombines
in region II [see Fig. 3(b)]. Furthermore, these pulses are
symmetric in the region of ionization and recombination (I
and II), analogous to a continuous field.

The introduction of the principal frequency ωP allows us a
better interpretation of the results described above. In Fig. 1,
we show that the period of time between a maximum and
a minimum of the field in the central region of the pulse is
accurately described by the period TP, associated with the
principal frequency ωP (TP = 2π/ωP). We have also shown
that TP decreases as the spectral content of the pulse increases
(the FWHM value of the pulses gets smaller). This result is
clearly visible in the fields represented by Figs. 3(a) and 3(b),
where we see that, as the FWHM decreases, the period TP does
so as well.

For the case of the spectra generated by the sine-like fields
[Fig. 3(d)], the reduction in TP is observed as a decrease
in the cutoff, when the pulse becomes temporarily shorter.
Furthermore, the electron time of flight in the continuum τ ,
for the most energetic trajectories, decreases accordingly. This
can be seen from the classic analysis shown in Figs. 4(d)–4(f),
where the times of flight, denoted by green dashed arrows,
are τ (π ) ≈ 0.64 opt. cycles, τ (2π ) ≈ 0.627 opt. cycles, and
τ (3π ) ≈ 0.6 opt. cycles. This analysis is relevant considering
the efficiency of the harmonic generation depends on the time
of flight of the electron in the continuum and scales as ∝λ

[41]. To calculate the classical cutoff of the different spectra,
as a function of the frequency ωP, we use the formula IP +
3.17UP,where UP is the ponderomotive energy, UP = E2

0

4ω2
P
, and

IP the ionization potential. Thus, for λ0 = 2000 nm, we get
λP(π ) = 1960 nm, λP(2π ) = 1850 nm, and λP(3π ) = 1680
nm, which correspond to HHG cutoff at ≈127 eV, 115 eV,
and 97 eV, respectively. These values are indicated by the
dotted red, dashed green, and solid blue lines in Fig. 3(d),
respectively.

In the case of cosine-like pulses the situation is different.
As mentioned before, there are two temporal regions in the
pulses that contribute to the harmonic spectrum cutoff. The
region I-II, for all cases, generates a cutoff given by I0λ

2
0 and

has a value of approximately 132 eV. In contrast, the region
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FIG. 4. Time-frequency analysis extracted from the 1D-TDSE HHG spectra. Superimposed we plot the classically computed rescattering
energies of electrons as a function of the ionization time, in white dots, and recombination time, in black dots, for the laser pulses of
Fig. 3(a) [panels (a)–(c)] and Fig. 3(b) [panels (d)–(f)]. In panels (a)–(c) the solid red (dashed green) arrow corresponds to the electron
trajectory that contributes to the more (less) energetic HHG cutoff. Meanwhile, in panels (d)–(f) the green arrow corresponds to the electron
trajectory that contributes to the single HHG cutoff (see the text for more details). The ionization potential, Ip, is indicated by a black
arrow.

II-III of the pulse generates a cutoff that depends on �ω.
If we suppose that the kinetic energy the electron acquires
in the continuum is given by the region of the pulse that
recombines it, in this case region III [42,43], the intensity
I0 must be adjusted as a function of the field amplitude in
such temporal region, in order to keep the HHG cutoff ∝Iλ2

0.
Thus we obtain the following intensities: I (π ) = 0.92 × I0,
I (2π ) = 0.6562 × I0, and I (3π ) = 0.412 × I0 (with the rela-
tive amplitude of the fields in region III equal to 0.9, 0.656,
and 0.41, respectively). If we also assume that the frequency
dominating this region is ωP, we obtain the following cutoffs:
105.6 eV, 57 eV, and 27.6 eV. The position of these cutoffs is
denoted in Fig. 3(c) with a dotted red, dashed green, and solid
blue line, respectively. As can be observed, these values for
the less energetic cutoff are in very good agreement with the
1D-TDSE predictions. Therefore, for the case of cosine-like
pulses, the laser-matter interaction seems to be dominated
simultaneously by a first region (I-II), governed by the carrier
frequency ω0, and another region (II-III), governed by the
principal frequency ωP [44].

B. E2R(t ) fields

For the simulations performed with the pulses E2R(t ), two
representative examples were chosen, based on the parameters
�ω and δω [see Eqs. (6b) and (4b)]. The respective laser
electric fields are shown in Figs. 5(a) and 5(b) (for the cosine-
like and sine-like pulses, respectively), where the dotted red

(solid blue) line denotes the pulse with �ω = 0.1 and δω = π

(�ω = π/2 and δω = π/2).
As in the case of the ER(t ) fields, the central wavelength

was set to λ0 = 2000 nm and the target is a hydrogen atom
with IP = 0.5 a.u. The peak electric field amplitude is now
E0 = 0.037 a.u., which corresponds to a laser peak intensity
of I0 = 5 × 1013 W/cm2. Analogous to the case of the ER(t )
fields, for the sine-like pulses, the peak field amplitudes are
multiplied by a scale factor, in such a way that their values are
E0 = 0.037 a.u. in all the cases.

Figures 5(c) and 5(d) show the harmonic spectra generated
by the pulses given by Figs. 5(a) and 5(b), respectively. In
the case of sine-like pulses, the structure of the harmonic
spectrum is analogous to that shown for the ER(t ) pulses. That
is, there is a continuous spectrum of harmonics, which reaches
a well-defined maximum value. In the case of cosine-like
pulses the situation is different. The pulse represented by a
solid blue line (�ω = π/2 and δω = π/2) generates a con-
tinuous spectrum similar to a sine-like pulse. On the contrary,
for the pulse represented by the dotted red line (�ω = 0.1
and δω = π ), it can be seen that there are two plateaus with
their respective cutoffs, at energies around 15 eV and 35 eV.
To analyze these structures in the spectra and relate them to
the principal frequency defined in Eq. (3), we carried out a
time-frequency analysis (see Fig. 6), on which, in addition, we
superimpose the classically computed rescattering energies of
electrons as a function of the ionization time, in white dots,
and recombination time, in black dots. Figures 6(a) and 6(b)
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FIG. 5. Cosine-like (a) and sine-like (b) E2R(t ) pulses for different values of �ω and δω. The dotted red (solid blue) line corresponds to
pulses with �ω = 0.1 and δω = π (�ω = π/2 and δω = π/2). The labels I–III denote the ionization and recombination regions (see the text
for more details). HHG spectra for the cosine-like (c) and sine-like (d) pulses plotted in panels (a) and (b), respectively. The vertical lines
correspond to the different HHG cutoffs (see the text for more details).

correspond to the cosine-like pulses, dotted red and solid blue
lines, respectively [see Figs. 5(a) and Fig. 5(c)]. Here we see
how the electron ionization probability is greater in region II
of the pulse and practically zero in region I. This is due to the
fact that the amplitude of the field in region I is not intense
enough as to ionize the electron by tunneling. In this way, the
dominant event occurs when the electron is ionized in region
II and recombines in region III. This event is shown with a
green dashed line with arrows and corresponds to a maximum
energy of approximately 15 eV. In Fig. 6(b), a similar situation
is shown: the ionization probability in region I of the pulse is
negligible, in relation to the one in region II. Hence, there is
only one ionization-recombination event, which takes place in
the temporal region II-III of the pulse. This event is shown
with a green dashed line with arrows and has a maximum
energy of approximately 30 eV.

For sine-like pulses, the analysis is shown in Figs. 6(c)
and 6(d) (dotted red and solid blue lines, respectively). For
these cases, we observe there is a predominant ionization-
recombination event, which originates in the region I-II of the
pulse, analogous to the case of the pulses ER(t ).

To explain the spectra obtained as a function of the prin-
cipal frequency ωP, we proceed to compute its value for
the two pulses presented. Using the definition, Eq. (3), we
obtain ωP = 1.25ω0 for the case �ω = 0.1 and δω = π and
ωP = 1.06ω0 for the cases �ω = π/2 and δω = π/2. Tak-
ing into account that for the case of cosine-like pulses the
peak field amplitude relative to the maximum amplitude in
region III is 0.26 and 0.62 (dotted red and solid blue solid
lines, respectively), we proceed to calculate the different cut-

offs in the same way as for the case of the pulses ER(t ).
These are indicated with a dotted red and solid blue line
in Figs. 5(a) and 5(b), where the cutoff for an intensity of
I0 = 5 × 1013 W/cm2 and a wavelength of λ0 = 2000 nm is
indicated by a black dashed line. For sine-like pulses with
ωP(0.1, π ) = 1.25ω0, the cutoff results in 51.4 eV and, with
ωP(π/2, π/2) = 1.06ω0, in 66.2 eV. For cosine-like pulses,
with ωP(0.1, π ) = 1.25ω0 we obtain a cutoff at 16 eV and
with ωP(π/2, π/2) = 1.06ω0 at 33.8 eV. These last values are
in excellent agreement with the quantum mechanical simula-
tions.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, a definition of the principal frequency of
an ultrashort laser pulse is introduced. This frequency, called
principal frequency, describes in a better way the interaction
between an ultrashort pulse with matter, particularly when the
spectral content of the pulse has more than one octave, which
in the temporal domain corresponds to the single- or sub-cycle
regime.

In addition, through the principal frequency ωP the CEP
effects in the HHG can be interpreted in an alternative way.
For sine-like pulses, a single HHG cutoff is generated by
a single ionization-recombination event (one region of re-
combination associated to one region of ionization) between
two symmetric regions at the center of the pulse, in which
the principal frequency ωP dominates the interaction. On the
other hand, for cosine-like pulses, there are two ionization-
recombination events that contribute to the development of
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FIG. 6. Time-frequency analysis extracted from the 1D-TDSE HHG spectra. Superimposed we plot the classically computed rescattering
energies of electrons as a function of the ionization time, in white dots, and recombination time, in black dots, for the laser pulses of
Fig. 5(a) [panels (a) and (b)] and Fig. 5(b) [panels (c) and (d)]. In all the panels the green arrow corresponds to the electron trajectory
that contributes to the single HHG cutoff (see the text for more details). The ionization potential, Ip, is indicated by a black arrow.

several HHG cutoffs. The first ionization-recombination event
is governed by the carrier frequency ω0, in the region in which
the amplitude of the field that ionizes the atom is smaller
than the maximum peak field amplitude, responsible to the
recombination. The second ionization-recombination event is
dominated by the principal frequency ωP. Here, the ionization
of the atom takes place in the region of the pulse with higher
peak amplitude and the recombination in the region of smaller
peak amplitude.

These two events are clearly visible on the HHG spectra
as two plateaus, with different cutoff energies and efficiency.
This is so because the cutoff scales as ∝λ2 and the trajectory
excursion time duration as ∝λ. Due to the fact that in the
central part the EG(t ) pulses have a temporal shape similar to
the ER(t ) ones, results obtained with these kinds of pulses do
not contribute to the final discussion. We have noted, however,
that, for pulses with an asymmetric frequency spectrum or a
more complex frequency content, a definition of the principal
frequency ωP using a density ρ̃(ω) = ωS(ω)1/2 gives better
predictions for HHG cutoff. On the other hand, the latter
definition would be hard to justify from first principles.

The introduction of the principal frequency ωP suggests
that the distribution of the photons “inside” an ultrashort pulse

is not linear. We show that the principal frequency is shifted
to the higher frequencies when the spectral width of the pulse
increases. On the other hand, a similar result was shown in
the temporal domain through the introduction of an “intrinsic
chirp” in THz pulses [45–47], particularly when those pulses
are focused.

As the nonlinear response of matter depends on some
power of the electric-field amplitude (En

0 ), it is to be expected
that, for few-cycle pulses, the interaction is dominated by the
principal frequency ωP (or period TP), which is the one that
defines the position of the maxima and minima of the field
[48].
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