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Strong laser fields and their power to generate controllable high-photon-number
coherent-state superpositions
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Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field
physics with quantum optics by generating nonclassical states of light. Here, we take a further key step and show
the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions.
This has been achieved by using two of the most prominent strong-laser induced processes: high-harmonic
generation and above-threshold ionization. We show how the obtained coherent-state superpositions change
from an optical Schrödinger “cat” state to a “kitten” state by changing the atomic density in the laser-atom
interaction region, and we demonstrate the generation of a nine-photon shifted optical “cat” state, which, to our
knowledge, is the highest photon number optical “cat” state experimentally reported. Our findings anticipate the
development of new methods that naturally lead to the creation of high-photon-number controllable coherent-
state superpositions, advancing investigations in quantum technology.
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I. INTRODUCTION

Strong laser field physics and quantum optics are two
research directions founded on the classical and quantum
description of the electromagnetic field, respectively. Quan-
tum optics has proven to be a very important field in the
development of quantum technologies [1–3], advancing stud-
ies ranging from fundamental tests of quantum theory to
quantum information processing and quantum communica-
tion protocols. Central to these applications lies the concept
of nonclassical light states, that is, states of light that can be
described only in a quantum-mechanical frame [4–6]. Within
the family of nonclassical light states, the superposition of two
distinct coherent states, i.e., the so-called optical Schrödinger
cat states, has proven to be a potentially useful candidate for
the aforementioned applications [7–12]. However, despite the
progress there has been so far towards their practical gen-
eration [13–18], the applicability of the existing optical cat
states is partially restricted by their low photon number. Fur-
thermore, the development of new schemes for the generation
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of high-photon-number optical cat states with controllable
quantum features is considered a challenging task.

On the other hand, strong laser field physics [19–25]
is a widely active research direction that has opened the
way for studies ranging from relativistic electron acceleration
(see [19] and references therein) to ultrafast electronics (see
[26–28] and references therein). Central to these investiga-
tions is the interaction of atoms with intense laser fields, which
leads to the generation of coherent radiation in the extreme
ultraviolet (XUV) [23,29–34] and the x-ray [35,36] regimes,
and it has been substantially applied in attosecond science
[23,27,37], nonlinear XUV optics [38–45], high-resolution
spectroscopy [46,47], and tomography [48,49]. The majority
of these studies are experimentally conducted using high-
power femtosecond laser sources, and their interaction with
matter is theoretically described by approaches in which the
electromagnetic field is treated classically.

Despite the large amount of progress achieved in quantum
optics and strong laser field physics, the direction of both
research domains has remained uncoupled over the years.
This is primarily due to the highly successful treatment of a
classical electromagnetic field in strong laser physics and the
assumption that the quantum aspects of the field were super-
fluous. Thus, the advantages emerging from the connection
between quantum optics and strong laser field physics remain
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largely unexploited. However, very recently a link between
both disciplines has been achieved theoretically and experi-
mentally by showing that intense laser-matter interactions can
lead to the generation of optical Schrödinger cat states [50].

Here, we take a key step forward and show the power
of the strong laser fields for the generation of controllable
high-photon-number coherent-state superpositions. This has
been achieved using the processes of high-harmonic gener-
ation (HHG) and above-threshold ionization (ATI) induced
in intense laser-atom interactions. Specifically, we study the
back-action of these two processes on the initial coherent state
of the driving field, we analyze its phase space dynamics
within a cycle of the field and along the duration of the
driving pulse envelope, and we show how the key action of
conditioning on HHG and ATI processes can naturally lead
to the generation of coherent-state superpositions of arbitrary
high-photon number. We also discuss how the laser-atom in-
teraction conditions, in experiment, can be used to control the
quantum features of these states. The theoretical results have
been confirmed experimentally by showing the dependence
of the nonclassical features of the generated light after HHG
on the atomic gas pressure. Furthermore, to demonstrate the
high-photon nature of the generated cat states, we have exper-
imentally achieved a nine-photon number optical Schrödinger
cat state.

The paper is organized as follows. In Sec. II A we present
the Schrödinger equation governing the interaction between
the atom and the quantized field, and in Secs. II B and II C
we condition the obtained equation to the HHG and ATI
processes and study the obtained quantum optical states. In
Sec. III A we describe the experimental setup that allows for
the conditioning onto HHG, which is later used in Sec. III B to
show the transition from a “cat” state to a “kitten” by changing
the atomic density in the interaction region, and in Sec. III C to
show the high-photon-number nature of the obtained quantum
optical cat states. In the present work, we consider as low- and
high-photon-number states those states having mean photon
number 〈n〉 in the range 〈n〉 � 2 and 〈n〉 > 5, respectively.
Finally, in Sec. IV we provide a discussion on the perspective
toward future implications of this work.

II. THEORY

A. Theoretical background

The qualitative understanding of the interaction is tra-
ditionally provided by the well-known three-step model
[21,22,24]. According to this model, when a low-frequency
[usually in the infrared (IR) spectral range] intense linearly
polarized laser field interacts with an atom or molecule, an
electron tunnels out from the considered system, then it ac-
celerates in the continuum gaining energy from the laser
field, and, within the same cycle of the field, it may recollide
elastically or inelastically with the parent ion. This process
is repeated every half-cycle of the laser field leading to the
generation of ions, photoelectrons, or photons with frequen-
cies higher than the driving laser field [high harmonics (HH)].
The non-recolliding electrons and the electrons that recollide
elastically with the parent ion contribute to the generation of
above-threshold ionization photoelectrons [31,51], while the

inelastic recollision leads to the generation of HH (the elec-
tron recombines with the ion emitting a photon) or multiple
charged ions (for example, via nonsequential double ioniza-
tion) [31].

Our fully quantized theoretical approach relies on the study
of the reduction of the amplitude (δαL) in the initial coherent
state of the fundamental mode (|αL〉) as a consequence of
its interaction with the atomic ensemble. The performance
of further quantum operations, which we shall refer to here-
after as conditionings, allows us to constrain our equations to
specific strong-field physics processes, in particular to HHG
and ATI. As a consequence of these operations, schematically
illustrated in Fig. 1, the outgoing final state of the fundamental
mode is given as the superposition of amplitude-shifted coher-
ent states, as was shown in [50] for the HHG scenario.

Briefly (further details about the calculations can be
found in Appendix A), we start from the time-dependent
Schrödinger equation (TDSE) describing the interaction of
the quantized field with the considered atom within a single
active electron picture and in the dipole approximation. After
performing a set of unitary transformations, it can be shown
that the final TDSE characterizing the joint state between the
electron and the field modes is given by

ih̄
∂

∂t
|ψ (t )〉 = −eÊQ(t ) · R̂H (t )|ψ (t )〉, (1)

where eR̂H (t ) is the time-dependent dipole operator in the
so-called semiclassical interaction picture (see Appendix A)
acting exclusively on the electronic degrees of freedom, and
ÊQ(t ) is a discrete version the electric field operator acting
on the fundamental modes and its harmonics up to the cutoff
region of the spectrum, that is,

ÊQ(t ) = −ih̄g(ωL ) f (t )

[
(â† − â) +

cutoff∑
q=2

√
q(b̂†

q − b̂q)

]
,

(2)
where â (â†) and b̂q (b̂†

q) are the annihilation (creation) opera-
tors acting on the fundamental and qth harmonic, respectively,
g(ωL ) ∝ √

ωL/Veff is the coefficient that enters into the expan-
sion of the laser electric modes and that depends on Veff, which
is the effective quantization volume [5,52], and 0 � f (t ) � 1
is a dimensionless function describing the pulse envelope.

Note that, as a consequence of the intense laser-atom inter-
action, we can either find the electron remaining in the ground
state or in a continuum state. In the following, we show how
Eq. (1) can be used for the quantum optical description of two
of the most central processes in strong-field physics: HHG and
ATI.

B. Quantum optical dynamics of HHG

In the HHG process, first the electron gets transferred to
the continuum via tunneling ionization due to the strong laser
field we are applying, and later it recombines with the parent
ion that was left behind, ending up again in the ground state
of the system. Therefore, in order to get information about the
HHG photonic quantum state, we condition Eq. (1) onto the
atomic ground state |g〉, i.e.,

ih̄
∂

∂t
〈g|ψ (t )〉 = −ÊQ(t ) · 〈g|eR̂H (t )|ψ (t )〉. (3)
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FIG. 1. Scheme of the different conditionings. A high-photon-number coherent state coming from a laser source interacts with an atomic
gas jet. As a consequence of the strong-field interaction that takes place, some electrons will ionize and, subsequently, may either recombine
with the parent ion generating high-order harmonics or stay in the continuum. Thus, depending on the particular process we want to consider,
we can look at the generated harmonics in case we want to study the quantum optical state of light obtained after HHG, and/or we can measure
the generated photoelectrons in order to include ATI processes. We can further constrain this last measurement to photoelectrons that have
a specific kinetic momentum, or consider all possible momenta. As a consequence of these conditioning measurements, the final quantum
optical state of the IR mode can be written as a superposition of two or more coherent states.

After strong-field physics approximations, the above equa-
tion can be expressed as (see Appendix B)

ih̄
∂

∂t
|�(t )〉 = −ÊQ(t ) · dH (t )|�(t )〉, (4)

where |�(t )〉 = 〈g|ψ (t )〉 and dH (t ) = 〈g|eR̂H (t )|g〉 is the
averaged time-dependent dipole operator. Here, dH (t ) can
be easily computed by numerically solving the TDSE, or
by means of the strong-field approximation (SFA) theory
[22,23,53]. Whatever the method used, this equation can be
easily solved as it is written as a linear combination of photon
creation and annihilation operators for the different modes
considered in the problem. This has a natural implication,
namely that the final solution is given by a product state of
all the modes participating in the process,

|�(t )〉 = eiϕL (t )|(αL + δαL )e−iωLt 〉 ⊗ eiϕ2(t )|β2e−i2ωLt 〉
⊗ · · · ⊗ eiϕq (t )|βqe−iqωLt 〉 ⊗ · · · , (5)

where δαL(t ) and βq(t ) are defined as

δαL(t ) = Ng(ωL ) ·
∫ t

t0

dτ f (τ )dH (τ )eiωLτ , (6)

βq(t ) = N
√

q g(ωL ) ·
∫ t

t0

dτ f (τ )dH (τ )eiqωLτ . (7)

We recall that our analysis has been performed within the
single active electron picture. However, in Eqs. (6) and (7)
we have assumed that we have N atoms that contribute to the
HHG process coherently in a phase-matched way. One can see
(see Appendix B) that the shift δαL(t ) onto the initial coherent
state is related to the electron and ionization processes taking
place in HHG, while the βq’s recover their features regarding
the harmonic emission.

To study the backaction of the electron acceleration over
the initial state of the system, we investigate the phase space
dynamics of δαL using the mean value of the photonic quadra-
tures x̂L and p̂L. Furthermore, we consider the interaction of

the laser pulse with a single atom, so that δαL is determined
by Eq. (6) when N = 1. Defining x̂L, p̂L as

x̂L = 1√
2

(â + â†) and p̂L = 1

i
√

2
(â − â†), (8)

it can be shown that their mean values with respect to Eq. (5)
are

〈x̂L(t )〉 =
√

2|αL + δαL(t )| cos (ωLt + θ (t )),
(9)

〈p̂L(t )〉 = −
√

2|αL + δαL(t )| sin (ωLt + θ (t )),

with θ (t ) the phase factor of [αL + δαL(t )] = |αL +
δαL|e−iθ (t ). The integral defining δαL(t ) was calculated nu-
merically employing dH (t ) extracted from the QPROP software
[54], using a sinusoidal squared laser pulse envelope with 12
cycles and fundamental wavelength λL = 800 nm. Figure 2(a)
shows the amplitude shift of the coherent state in phase space,
while Fig. 2(b) shows the time dependence of the amplitude
|αL + δαL| and the phase factor θ (t ) [inset in Fig. 2(b)].

The dynamics of δαL is summarized in the following four
main features: (i) during the acceleration process, the ion-
ized electron absorbs photons resulting in an enhancement of
|δαL|, i.e., a reduction of |αL + δαL| [see Fig. 2(b), and for
more information see Appendix C]; (ii) |δαL| increases with
the amplitude of the driving field as the electron gains more
kinetic energy; (iii) |δαL| continuously increases during the
laser pulse (having a maximum enhancement rate at the peak
of the pulse envelope, where the field amplitude is maximum),
reaching its maximum value at the end of the pulse; (iv) the
|δαL| enhancement rate follows the gradient of the driving
electric field amplitude. This leads to an oscillatory modu-
lation of frequency 2ωL of the enhancement of |δαL| during
the laser pulse. It is noted that an oscillatory modulation of
frequency 2ωL has also been observed on the phase θ (t ) [see
the inset of Fig. 2(b)]. However, because this phase shift is in
the order of 10−3 rad, its influence on the state of the field is
considered negligible and thus it is not further discussed here.
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FIG. 2. Dynamics of the coherent shifted state obtained after HHG. (a) Dynamics of |αL〉 with |αL| ≈ 28 (black dashed curve) and
|αL + δαL (t )〉 (blue continuous curve) in phase space. The analysis was performed using g(ωL ) ≈ 10−1. The circles in the black dashed
and blue continuous curves, which represent |αL〉 and |αL + δαL (t )〉, respectively, depict the final coherent-state amplitude obtained after the
evolution. (b) Dependence of |αL + δαL (t )| (blue continuous curve) on time. The black dashed line depicts the initial value of |αL|. The applied
electric field is plotted with the dashed green line in atomic units (a.u.). The inset represents the dependence of the phase θ with time. We note
that in this figure the values of αL have been chosen in such a way that the effects of δαL could be distinguished. In general, HHG processes
take place with values of |αL| ≈ 106.

Finally, we discuss how the aforementioned results can be
used for the creation of optical Schrödinger cat states in the
IR spectral region. We note that, although the above analysis
is applicable for high-photon-numbers, in the following we
discuss the case of low-photon-numbers states. This is be-
cause we are interested in providing results that can be used
by an experiment that utilizes the quantum tomography (QT)
method [55,56] for the quantum state characterization.

To create the coherent-state superposition between the
initial coherent state of the field and its amplitude-shifted
version, we condition the state of the fundamental field such
that it corresponds to the one obtained after HHG as described
in Ref. [50] (see also Appendix D). After reducing the am-
plitude of the fundamental laser mode, the key action for
creating the nonclassical light state is the postselection of the
coherent shifted state over those interaction events that lead to
the generation of at least one harmonic photon. This is done
by performing an anticorrelated measurement between the
signal obtained from the harmonic emission and the depletion
obtained in the fundamental mode [50,57]. This operation,
which we refer to as conditioning on HHG, is mathematically
expressed for high values of the harmonic cutoff via the pro-
jector operator [58]

P = 1 − |αL〉〈αL|. (10)

When this operator acts over Eq. (5), and after conditioning
the harmonics to be found in

⊗cutoff
q=2 |βq〉, the final state of the

system is given (up to normalization) by

|�HHG〉 = |αL + δαL〉 − ξ |αL〉, (11)

which is the superposition of two coherent states, com-
monly referred to as optical cat states [59,60], where ξ ≈
〈αL|αL + δαL〉. Note that the dependence of the weight ξ

with δαL allows us to control the quantum features of the
state [61], for example by modifying the density of atoms
in the interaction region or the intensity of the employed
laser field. In particular, in the limit where δαL → 0 we get
an optical “kitten” state characterized by |�HHG〉 ≈ D(αL )|1〉
(see Appendix D), while the limit 0 < ξ < 1 leads us to the
“genuine cat” state presented in Eq. (11). Furthermore, if
|δαL| becomes a very large quantity such that ξ → 0, then
the final state is just given by the amplitude-shifted coherent
state |�HHG〉 = |αL + δαL〉.

The different cases discussed above are shown in Fig. 3,
where the Wigner function of the final state (see Appendix D)
has been calculated using an electric field with a sinusoidal
squared envelope, 12 cycles of duration (∼30 fs duration),
wavelength λL = 800 nm, and amplitude EL = 0.053 a.u.,
where a.u. denotes atomic units (which corresponds to a laser
intensity of about 1014 W/cm2). At the beginning of the pulse
[Figs. 3(a) and 3(b)], where the driving field amplitude is
small, δαL is small, resulting in the creation of a “kitten”
state, while at the end of the pulse, where δαL is getting larger
[according to Fig. 2(b)], the Wigner function depicts a genuine
“cat” state [Figs. 3(e)–3(f)]. Evidently, in the case of reducing
the intensity of the driving field, the final state would be a
“kitten.”

One of the main advantages of using the Wigner func-
tion as an observable for the final quantum optical state of
the field is that it allows the superposition between the two
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FIG. 3. Wigner function evolution along the pulse when condi-
tioning to HHG. Here, we have used the same electric field as in
Fig. 2, and we see how the Wigner function looked after (a) 2, (b) 4,
(c) 6, (d) 8, (e) 10, and (f) 12 cycles. Re[β − α] ≡ xL, Im[β − α] ≡
pL , with xL and pL the values of the quadrature field operators
x̂L = (â + â†)/

√
2 and p̂L = (â − â†)/i

√
2, respectively.

coherent states to be seen explicitly. If the depletion in the
fundamental is small enough to witness a Wigner negativity,
the anticorrelation measurement is not able to exactly dis-
tinguish the contributions from the depleted field |αL + δαL〉
and the input state |αL〉. It is the indistinguishability at the
detector that leads to the observed interference. In particular,
if δαL is too small, we get the “kitten” case where both states
contribute equally to the Wigner function, and the distribu-
tion has a homogeneous ringlike shape structure around a
negativity center that witnesses the quantum superposition.
As the depletion increases, we get a genuine “cat” for which
the distribution is not homogeneous, since the contribution of
|αL + δαL〉 is bigger than the one provided by |αL〉 because
of the ξ prefactor. This increasing in the distinguishability
leads to smaller values of the Wigner negativity. Finally, in
the case of enormous values of the depletion (leading to
ξ → 0), we only observe the contribution from |αL + δαL〉,
and hence the Wigner function is a Gaussian centered around
αL + δαL.

C. Quantum optical dynamics of ATI

As mentioned above, ATI processes occur when the ion-
ized electron does not re-collide with the parent ion, or if it
does, the process takes place elastically. Therefore, to study
these phenomena within our formalism, we will condition
Eq. (1) upon finding the electron in continuum states, which
we will simply represent as |v〉, where v denotes the outgoing
kinetic momenta of the electron. In this case, the conditioned

Schrödinger equation reads

ih̄
∂

∂t
〈v|ψ (t )〉 = −ÊQ(t ) · 〈v|eR̂H (t )|ψ (t )〉. (12)

At this point, we introduce the SFA theory assumptions
[22] and neglect the effects of the electronic bound excited
states. Thus, introducing the SFA version of the identity

1 ≈ |g〉〈g| +
∫

dv|v〉〈v| (13)

in Eqs. (3) and (12), we get the following set of coupled
differential equations:

ih̄
∂

∂t
|�(t )〉 = − ÊQ(t ) · dH (t )|�(t )〉

−
∫

dv ÊQ(t ) · dH (v, t )|�(v, t )〉,

ih̄
∂

∂t
|�(v, t )〉 = − ÊQ(t ) · d∗

H (v, t )|�(t )〉

−
∫

dv′ÊQ(t ) · dH (v, v′, t )|�(v′, t )〉,
(14)

where we denote the state conditioned to ATI as |�(v, t )〉 =
〈v|ψ (t )〉, dH (v, t ) = 〈v|eR̂H (t )|g〉 is the time-dependent
dipole moment matrix element between states |v〉 and |g〉, and
dH (v, v′, t ) = 〈v|eR̂H (t )|v′〉 represents the time-dependent
dipole moment matrix element between states |v〉 and |v′〉.

In the spirit of the SFA theory, we may neglect the effect
of the continuum-continuum transitions and obtain the con-
tribution to ATI corresponding to direct tunneling, or treat
the continuum-continuum transitions perturbatively [62–65]
in order to describe the rescattered ATI electrons at higher
energies up to 10Up, where Up is the ponderomotive potential
defined as Up = e2E2/4mω2

L , with E the electric field ampli-
tude, and m and e the electron’s mass and charge, respectively.
Thus, considering electrons of “low” kinetic energy (<2Up)
and keeping the strong-field approximations, the state condi-
tioned to ATI reads

|�(v, t )〉 = i

h̄

∫ t

t0

dt ′ ÊQ(t ′) · d∗
H (v, t ′)|�(t ′)〉, (15)

where |�(t )〉 is the solution to Eq. (3).
To derive the reduced density matrix for the electromag-

netic field that corresponds to ATI processes, we will consider
two different strategies: (i) we condition on ATI electrons
that have a specific outgoing direction and kinetic momen-
tum v, which leads to a reduced density matrix of the form
ρ = |�(v, t )〉〈�(v, t )| (pure state); (ii) we condition on all
possible ATI electrons without distinguishing on the particular
direction and kinetic momentum of the outgoing electrons,
which leads to ρ = ∫

d3v|�(v, t )〉〈�(v, t )| (mixed state).
For the first scenario, assuming that during the ATI process

the harmonic coherent-state amplitudes [βq in Eq. (5)] stay
very close to the vacuum, one can see that the final state of the
system can be written as (for more details, see Appendix E)

|�̃(v, t )〉 ≈ i

h̄

N−1∑
j=0

∫ t j+1

t j

dt ′ ÊL(t ′) · d∗
H (v, t ′)

× |( j + 1)�〉, (16)
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FIG. 4. Wigner function after single-ionization ATI. Dependence
of the Wigner function with the number of half-cycles N of equal
intensity provided by a laser source, and with the shift between
two consecutive coherent states �. In these subplots, we consider
(a) N = 5, � = −0.25i; (b) N = 5, � = −0.5i; (c) N = 8, � =
−0.25i; (d) N = 8, � = −0.5i. Re[β − α] ≡ xL, Im[β − α] ≡ pL ,
with xL and pL the values of the quadrature field operators x̂L =
(â + â†)/

√
2 and p̂L = (â − â†)/i

√
2, respectively.

where N is the number of half-cycles and � is the amount of
photons absorbed in each half-cycle (as discussed in Fig. 2).
We see that the final state is given as a superposition of differ-
ent coherent states (which, in principle, is larger than two),
where each of them is affected by the instantaneous value
of the electric field operator evaluated at time t ′. In Fig. 4,
we present the Wigner functions calculated from Eq. (16). In
these calculations, we assumed that the electron tunnels out
with zero kinetic energy, and we considered (a) N = 5,� =
−0.25i, (b) N = 5,� = −0.5i, (c) N = 8,� = −0.25i, and
(d) N = 8,� = −0.5i. As we can see, as both N and �

increase, the distance between the two outermost coherent
states appearing in the superposition also increases and we
switch from a kitten state [like the one in Fig. 4(a)] to more
complicated coherent-state superpositions [like the one in
Fig. 4(d)]. Note that the distribution shown in Fig. 4(d) differs
from the symmetric one coming from a coherent-state super-
position of the form |α〉 ± |−α〉 in that we have more states in
the superposition that are contributing as well to the Wigner
function.

Another difference that we observe in these plots is
that some of the Wigner distributions obtained for single-
ionization ATI depict a small rotation [see, for instance,
Fig. 4(c)]. This is related to a change in the phase of the co-
herent states appearing in the superposition. However, it may
also be the case that small rotations are related to a change
in the phase of the respective amplitudes in the superposition,
which in the end is related to how we are implementing the
conditioning operations. In HHG, the coefficient ξ appears
as a consequence of the conditioning measurement that is
being applied to the optical modes, and if both δα and α

have either the same phase or a phase difference of π , as
happens in the present manuscript, then ξ is a real quantity.
In ATI, the coefficients weighting the superposition have a

FIG. 5. Wigner function after ATI and conditioning over all
possible momenta. Calculated Wigner functions after considering
equal and time-independent coherent shifts (a) δα = −0.1i, (b) δα =
−0.25i, (c) δα = −0.5i, and (d) δα = −0.75i. For the computation
of the Wigner function, we have further considered some approx-
imations over the time-dependent integrals, which are detailed in
Appendix E. Re[β − α] ≡ xL, Im[β − α] ≡ pL , with xL and pL the
values of the quadrature field operators x̂L = (â + â†)/

√
2 and p̂L =

(â − â†)/i
√

2, respectively.

different nature, as they depend, via d∗(v, t ), on the electron’s
trajectory before being detected, which in general is a com-
plex quantity. Thus, in single-ionization ATI we might find
changes in the coefficients from one term to the other, leading
to these rotations. Related to this, we expect that one of the
main effects of the carrier-envelope phase, i.e., the change of
phase between the carrier wave and the field envelope, over
the final Wigner distribution is the presence of these rotations,
which would affect the HHG state. However, further research
has to be done in this direction, since our analysis is restricted
to a multicycle pulse.

For the second scenario, in order to gain intuition about
the obtained mixed state, we are going to consider a linearly
polarized field, and assume (i) that during the ATI process
the harmonic coherent-state amplitudes stay very close to
the vacuum, and (ii) that the generated coherent shifts are
identical and time-independent. In general this is not true and,
as discussed in Fig. 2(b), the IR coherent state is continuously
increasing (in modulus) along the pulse. However, for single-
electron ionization processes, one may expect this shift to
remain very small. Therefore, under these considerations the
ATI state conditioned to all outgoing momenta reads

ρATI-IR =
∫ t

t0

dt ′
∫ t

t0

dt ′′ÊL(t ′)|δα〉〈δα|ÊL(t ′′)

× K (t ′, t ′′)eiϕ(t ′ )e−iϕ(t ′′ ), (17)

where ÊL is the part of the electric field operator in
Eq. (2) that acts over the fundamental mode and K (t, t ′′) =
〈d̂H (t ′)d̂H (t ′′)〉 − 〈d̂H (t ′)〉〈d̂H (t ′′)〉 (see Appendix E). The re-
sults for the calculated Wigner functions are shown in Fig. 5,
where in each of the subplots we have considered increasing
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values of δα [from (a) to (d)]. We note that its shape is
very similar to a “cat” state, and, as it happens in HHG,
as δα increases it tends to a typical Gaussian state. This is
due to the approximations we considered and that lead to
Eq. (17), since in the limit when δα is very big we can write
ÊL(t )|δα〉 ∝ |δα〉, which leads to the Gaussian-like Wigner
function. However, we note that this limit is not compatible
with our assumptions, since we expect δα to be small in the
single active electron picture. More nonclassical features are
expected for the exact state obtained after the interaction, i.e.,
without approximations, due to the change of δα in time. We
also note that the rotations obtained in the Wigner distribu-
tions appearing in single-ionization ATI do not show up in
this case. Although this is an expected feature given that the
K (t, t ′) is a complex function, the approximations we consider
here in order to gain intuition about the shape of the final
Wigner functions do not take this feature into account.

Finally, we remark that the plots we have presented thus
far for the ATI process correspond to the state right after the
interaction, i.e., in the displaced frame of reference. However,
for the Wigner function characterization this is not a problem
as, by implementing them, one observes the same features as
the ones shown in our figures upon a shift and a rotation.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The quantum features of the nonclassical light state of the
fundamental mode exiting the atomic medium depend on the
conditioning approaches used (HHG and/or ATI) and on δαL,
which introduces the dependence with the gas pressure in the
interaction area [Eq. (6)]. Here, the action of conditioning
was achieved using the quantum spectrometer (QS) approach
[57,66], and the quantum state characterization was performed
by means of homodyne detection and the well-known QT
method [55,56]. In the following, after the description of the
operation principle of the experimental approach (see also
Ref. [50] and Appendix F), we experimentally demonstrate
the dependence of the coherent-state superposition (created
by conditioning on HHG) on δαL, and the generation of
high-photon-number optical “cat” states. Following a similar
strategy, the method can be used for the characterization of
optical coherent-state superpositions generated by condition-
ing on the ATI process (see Appendixes E and G). This can
be achieved by using the ATI photoelectron signal recorded
by means of a time-of-flight electron spectrometer (see Ap-
pendix G, Fig. 10).

A schematic of the experimental approach is shown in
Fig. 6. The experiment was performed using as a primary laser
source a Ti:sapphire laser system delivering linearly polarized
≈35 fs pulses of λ ≈ 800 nm carrier wavelength. The IR laser
beam was separated into the branches of an interferometer
by a beam separator BS1. The reflected IR beam serves as a
reference beam of the QT method. The transmitted IR beam
was focused with an intensity ≈8 × 1013 W/cm2 into a xenon
pulsed gas jet, where harmonics up to 21st order have been
generated. The photon number of the generated XUV beam
(reflected by a harmonic separator HS) and the photon number
of a portion the IR beam (reflected by an IR beam separator

FIG. 6. Simplified scheme of the experimental setup. |αL〉 and
|αr〉 are the IR coherent states transmitted and reflected by an IR
beam separator BS1. The transmitted IR beam is focused into a xenon
gas jet where the high harmonics (HH) are generated. |αL + δαL〉
is the state of the IR field after the interaction. HS is a harmonic
separator that reflects the HH and leaves the IR beam to pass through.
BS2,3 is an IR beam separator and splitter, respectively. PDout and
PDHH are the IR and HH photodetectors, respectively, used by the QS
to condition the IR field exiting the atomic medium on the HHG. Just
before PDHH, a 150-nm-thick aluminum filter was placed in order
to select the harmonics with q � 11 and block any residual part of
the IR beam. F and Fin are neutral density filters. Ein is the state of
the IR field to be characterized. PD are the IR photodetectors used
by the balanced detector of the homodyne detection (HD) system.
Er is the field of the reference beam. ϕ is the controllable phase
shift introduced in the reference beam, and iϕ is the photocurrent
difference, which is proportional to the measurement of x̂ϕ . When the
xenon gas jet and the QS are switched on, the homodyne detection
system provides the measurement x̂ϕ only when the IR field exiting
the atomic medium is conditioned on, and the HHG via QT provides
the Wigner function of the light state |�post〉 = |αL + δαL〉 − ξ |αL〉
with ξ = 〈αL|αL + δαL〉.

BS2) have been recorded for each laser shot by the PDHH

and PDout photodetectors, respectively. These were used by
the QS to condition the IR field exiting the atomic medium
on the HHG process (see Appendix F). After BS2, the mean
photon number of the IR field was reduced (by means of
neutral density filters Fin) to the level of a few photons per
pulse. The IR field amplitude before reaching the balanced
detector of the homodyne detection system is denoted by
Ein. The Ein field was spatiotemporally overlapped in a beam
splitter (BS3) with the high-photon-number reference field Er

coming from the second branch of the interferometer. The
interfering fields after BS3 were recorded by a balanced de-
tector, which provides at each value of ϕ for each laser shot
the photocurrent difference iϕ . The values of iϕ are directly
proportional to the measurement of the electric field operator
Êin(ϕ) ∝ x̂ϕ = cos(ϕ)x̂ + sin(ϕ) p̂, and they have been used
for the reconstruction of the Wigner function [55,56,67] (see
Appendixes G and H). When the xenon gas jet and the QS
were switched on, the homodyne detection system measures
the x̂ϕ only when the IR field exiting the atomic medium
is conditioned on the HHG, providing via QT the Wigner
function of the light state |�post〉 = |αL + δαL〉 − ξ |αL〉 with
ξ = 〈αL|αL + δαL〉.

B. Dependence of the coherent-state superposition on δαL:
Optical “kitten” and “cat” states

To show the dependence of the quantum features of the
coherent-state superposition with δαL, we have measured the
Wigner function W (x, p) for two different values of δαL when
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FIG. 7. Optical “cat” and “kitten” states created by condition-
ing on HHG for different values of |δαL|. The left, middle, and
right panels show the measured x̂ϕ , the corresponding reconstructed
W (x, p), and the theoretically calculated Wth(x, p), respectively, pro-
jected onto the (x, p) plane. (a) Coherent state of driving laser field
measured when the Xe gas and QS approach were switched off.
(b) Optical “cat” state measured when the Xe gas jet and the QS
were switched on and the harmonic yield was close to maximum.
The corresponding Wth(x, p) has been calculated for |δαL| ≈ 0.5,
where |αL| ≈ 1.4 and |ξ | ≈ 0.88. (c) Optical “kitten” state measured
when the the harmonic yield was reduced by a factor of ≈25, i.e.,
δαL by a factor of ≈5, compared to the harmonic yield of (b). The
corresponding Wth(x, p) has been calculated for |δαL| ≈ 0.1, where
|αL| ≈ 1.3 and |ξ | ≈ 0.99. x and p are the values of the quadrature
field operators x̂ = (â + â†)/

√
2 and p̂ = (â − â†)/i

√
2. The Wigner

functions in these plots have been centered around the value of αL .

we condition on HHG. This is shown in Fig. 7 together with
the measurement of the coherent state of the driving field
[Fig. 7(a)]. The left panels show the measured x̂ϕ , the mid-
dle panels the corresponding reconstructed W (x, p), and the
right panels the theoretically calculated Wth(x, p). As δαL ∝ N
[Eq. (6)], the change of δαL was achieved by varying the
number of atoms N in the interaction region (using the delay
between the laser pulse arrival and the opening of the Xe gas
nozzle). It is noted that for experimental reasons (gas load in
the vacuum chamber), in the present experiment the maximum
value of the used N was set such that the harmonic signal was
slightly lower (a factor of ≈2) than its maximum value. Since
the harmonic yield (Y ) is Y ∝ N2, we then get δαL ∝ Y 1/2.
This relation provides a useful experimental guide for con-
trolling the value of δαL by monitoring the integrated signal
of the harmonics passing through the aluminum filter.

For reasons of completeness and for evaluating the perfor-
mance of the experimental setup, it is useful to measure first
the coherent state of the driving field by switching off the Xe
gas jet and the QS. This is shown in Fig. 7(a). As expected, the
state of the IR driving field is coherent, depicting a W (x, p)
with a Gaussian distribution. The same result was obtained
when the Xe gas and the QS were switched on and off, re-

spectively. By switching on both the Xe gas jet (at conditions
where the harmonic generation yield is close to maximum)
and the QS, as reported in Ref. [50], an optical “cat” state with
mean photon number 〈n〉 ≈ 1.74 ± 0.03 has been recorded
[Fig. 7(b)]. The W (x, p) depicts a half-ring-like shape with a
central negative minimum located at (xmin, pmin) ≈ (0, 0) and
a maximum at (xmax, pmax) ≈ (0,−1), which is in agreement
with the Wth(x, p) obtained by the theoretical calculations
for |δαL| in the range of 0.4–0.5. In Fig. 7(b) we show
the Wth(x, p) for |δαL| ≈ 0.5, where |αL| ≈ 1.4 and |ξ | ≡
|〈αL + δαL|αL〉| ≈ 0.88. The value of |αL| has been obtained
by the equation 〈n〉 = 〈�post|n̂|�post〉 using as 〈n〉 the value of
the measured mean photon number. When we reduce the Y by
a factor of ≈25, i.e., δαL by a factor of ≈5, the state super-
position transitions from an optical “cat” to a “kitten” state.
This is shown in Fig. 7(c), where an optical “kitten” state with
〈n〉 ≈ 2.54 ± 0.05 has been recorded. In this case, the mea-
sured W (x, p) depicts a full-ring shape with a central negative
minimum located at (xmin, pmin) ≈ (0, 0). This is in agreement
with the Wth(x, p) obtained by the theoretical calculations
obtained for |δαL| ≈ 0.1, where |αL| ≈ 1.3 and |ξ | ≈ 0.99.
We note that, for values of |δαL| < 0.1, our cat state behaves
as a displaced Fock state, as there is no pronounced maximum
on the ring-shaped phase space distribution.

C. Generation of high-photon-number optical “cat” states

For applications in quantum technology, it is also important
to be able to increase the photon number of the produced
optical “cat” states. As was mentioned before, the present
approach can be used for the production of arbitrary high-
photon-number “cat” states. To show this, we have recorded
a nine-photon shifted optical “cat” state (Fig. 8) created by
conditioning on HHG. Figure 8(a) shows the measurement of
x̂ϕ used to reconstruct the Wigner function shown in phase
space in Fig. 8(b). The measurement was performed using a
value of N approximately close to the value used to record
the low-photon-number optical “cat” state shown in Fig. 7(b),
while the photon number has been increased by means of
Fin (Fig. 6). This was achieved by the fine adjustment of the
angle of the Fin filter with respect to the incoming beam.
In this case, an optical “cat” state with 〈n〉 ≈ 9.4 ± 0.1 has
been recorded. The W (x, p) depicts a half-ring-like shape
with a central minimum located at (xmin, pmin) ≈ (0,−0.2)
and a maximum at (xmax, pmax) ≈ (0,−1.2). The shape of the
measured W (x, p) is reasonably close to the Wigner function
[Wth(x, p)] obtained by the theoretical calculations for |δαL|
in the range of 0.6–1.1. In Fig. 8(c), we show the Wth(x, p)
for |δαL| ≈ 0.8, where |αL| ≈ 3.7 and |ξ | ≈ 0.73. The lack
of negative values at the position of the minimum of the
measured W (x, p) is attributed to limitations of the present
experimental approach in obtaining the Wigner function and
the photon number with accuracy better than ±0.004 and
≈1.5%, respectively (see Appendixes G and H).

The limitations introduced for further increasing the mean
photon number of the shifted optical cat state are associated
with the resolution of the detection system and the decoher-
ence effects (see Appendixes H and I, respectively), which
cannot be excluded. A quantitative analysis of the decoher-
ence effects and their dependence on the photon number of the
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FIG. 8. High-photon-number optical “cat” state created by conditioning on HHG. (a) Measured x̂ϕ with xenon gas and QS switched
on. (b) Projection on (x, p) plane of the reconstructed W (x, p), which shows an optical “cat” state of 〈n〉 ≈ 9.4 ± 0.1. (c) Theoretically
calculated Wigner function Wth(x, p) for |δαL| ≈ 0.8, where |αL| ≈ 3.7 and |ξ | ≈ 0.73. x and p are the values of the quadrature field operators
x̂ = (â + â†)/

√
2 and p̂ = (â − â†)/i

√
2. The Wigner functions in these plots have been centered around the value of αL .

light state requires an extensive theoretical and experimental
investigation, which is out of the scope of our work. The
present results cannot be used for such analysis. However, in
order to further stress the potential of our approach to pro-
duce high-photon-number shifted optical cat states in a lossy
environment, we have used a simple, although exact, noise
model that introduces photon losses due to the interaction
with a Gaussian reservoir [68]. This is done by means of a
beam splitter where in one of the inputs we introduce our cat
state, while on the other an ancillary vacuum mode that is
later traced out (for more details, see Appendix I). This model
shows that, even in the case of high photon losses (in the range
of 60%), although the negativity of the Wigner function of the
optical cat state is reduced, the main features are maintained.

IV. DISCUSSION AND PERSPECTIVES

In the past two decades, pioneering optical methods in
quantum state engineering have been implemented for the
generation of optical catlike and cat states (cf. [13,15–18]).
These methods rely on the use of few-photon-number and
high-fidelity Fock states as primary sources, and they cur-
rently deliver optical cat states in the range of a few photon
numbers, restricting their applicability in quantum technolo-
gies. This is because the quantum technology toolbox contains
passive linear optical elements (such as phase shifters, beam
splitters, and fiber optics), which unavoidably have opti-
cal losses. Thus, it is evident that any beam propagating
through these elements will naturally suffer from photon
losses. Hence, one of the main motivations for generating
high-photon-number optical cat states (as we report here)
is associated with their power to be used in more complex
optical arrangements that can lead to the generation of large
optical cat states and massively entangled state superpositions
with controllable quantum features. Such states could highly
benefit from investigations concerning the fundamental tests
of quantum theory, quantum information processing, metrol-
ogy/sensing, and communication. Toward these directions,
we have recently reported how the method presented here
can be used for the development of more complex optical
arrangements that can lead to the generation of (i) controllable
large coherent-state superpositions [61], and (ii) multimode

entangled states spanning from the near infrared to the ex-
treme ultraviolet [58], which can be very useful for quantum
technology.

Additionally, and in a more general context, the present
findings can be used for linking the attosecond and quantum
information science (ATTOQUIS) toward the establishment
of a roadmap for novel platforms of attosecond science and
quantum technologies. Contemporary quantum technologies
face major difficulties in fault-tolerant quantum computing
with error correction, and they focus instead on various shades
of quantum simulation (Noisy Intermediate Scale Quantum
devices [69], analog and digital Quantum Simulators [70],
and quantum annealers [71]). There is a clear need and quest
for such systems that, without necessarily simulating the
dynamics of some quantum systems, can generate massive,
controllable, robust, entangled, and superpositions states. This
will enable the use of these states for quantum communica-
tions [72] (e.g., to achieve transfer of information in a safer
and quicker way), quantum metrology [73], and sensing and
diagnostics [74] (e.g., to precisely measure phase shifts of
light fields, or to diagnose quantum materials). To date, there
are no existing platforms that bring processes at such short
timescales to quantum information science. ATTOQUIS can
open the way for realizing universal and firmly established
tools to offer novel solutions and developments, i.e., a set
of methods to generate massive entangled states and massive
quantum superpositions for applications in quantum infor-
mation science, with the ultimate goal of bringing them to
quantum technologies.

V. CONCLUSIONS

In this work, we investigated the quantum optics of
strongly laser driven atoms. Using a fully quantized theo-
retical approach, we described the HHG and ATI processes,
and we showed how the conditioning on HHG and ATI
processes can naturally lead to the generation of amplitude-
shifted coherent-state superpositions. Additionally, we have
investigated the parameters that can be used to control the
quantum features of these states. This was experimentally
confirmed by measuring the quantum features of the coherent-
state superposition obtained after conditioning on HHG for
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different gas densities. We found that the coherent-state su-
perposition changes from an optical “cat” to a “kitten” state as
the number of atoms participating in the harmonic generation
process is reduced. We also show that this procedure can be
used for the generation of high-photon-number coherent-state
superpositions. This has been experimentally confirmed by
recording a nine-photon shifted optical “cat” state. Finally,
considering that the strong field laser-atom interaction is at
the core of strong laser-field physics, it can be considered that
our work builds the basis for the development of a new class
of controllable high-photon-number nonclassical light sources
and for quantum optical studies of interactions induced in
matter using laser intensities in the moderate and relativistic
regions [43,75].
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APPENDIX A: QUANTUM OPTICAL DESCRIPTION OF
THE LASER-ATOM INTERACTION: TRANSFORMATIONS

AND APPROXIMATIONS

Our starting point is the time-dependent Schrödinger equa-
tion (TDSE) describing the interaction of the quantized
electromagnetic field with a single electron,

ih̄
∂

∂t
|�̃(t )〉 = Ĥ (t )|�̃(t )〉, (A1)

where

Ĥ (t ) = Ĥ0 + ĤI + Ĥf . (A2)

Here, Ĥ0 = P̂2/2m + V (R̂) is the Hamiltonian describing
the electron bound to a potential V (R̂), ĤI = −eÊ · R̂ is the
dipole coupling that introduces the interaction between the
electron and the field in the dipole approximation, and Ĥf is
the electromagnetic free-field Hamiltonian. In the following,
we will represent the electronic quadrature operators with
capital letters (X̂ , P̂), while the photonic ones will be denoted
with lower-case letters (x̂, p̂).

As we aim to describe laser/harmonic pulses of finite du-
ration, we should consider in the free-field term Ĥf the full
continuum spectrum of the electromagnetic field. Neverthe-
less, for the sake of simplicity, we write it as the sum of
effective discrete modes containing the one obtained from
the laser with frequency ωL and its harmonics of frequencies
ωq = qωL, with q = 1, 2, 3, . . . up to the cutoff region of the
spectrum. Concretely, we have

Ĥf = h̄ωLâ†â +
cutoff∑
q=2

h̄qωLb̂†
qb̂q, (A3)

where â† (â) and b̂†
q (b̂q) are the creation (annihilation) op-

erators acting over the laser and the qth harmonic mode,
respectively. Following the same idea, we model the laser
electric field operator as

Ê(t ) = −ih̄g(ωL ) f (t )

[
(â† − â) +

cutoff∑
q=2

√
q(b̂†

q − b̂q )

]
.

(A4)

Here, we denote by g(ωL ) ∝ √
ωL/Veff the coefficient that

enters into the expansion of the laser electric field modes
and that depends on Veff, which is the effective quantization
volume [5,52]. Thus, eg(ωL ) encodes information about the
polarization modes and has dimensions (m−1 s−1). Finally,
0 � f (t ) � 1 is a dimensionless function describing the pulse
envelope.
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At time t = t0, we can describe the state of the system by
|�(t0)〉 = |g, αL,�H 〉, that is, with the electron lying on the
atomic ground state, the laser mode in a coherent-state, and
the harmonic modes in the vacuum state. Within this context,
the first transformation we apply consists of moving to the
interaction picture with respect to the electromagnetic field
Ĥf , i.e.,

|�̃(t )〉 = exp[−iĤ f t]|� ′(t )〉, (A5)

so that Eq. (A1) reads

ih̄
∂

∂t
|� ′(t )〉 = [Ĥ0 − eÊ(t ) · R̂]|� ′(t )〉, (A6)

where the laser electric field operator defined in Eq. (A4) has
an extra time dependence

Ê(t ) = − ih̄g(ωL ) f (t )[(â†eiωLt − âe−iωLt )

+
cutoff∑
q=2

√
q(b̂†

qeiqωLt − b̂qe−iqωLt )]. (A7)

The second transformation we apply consists of a displace-
ment in the subspace of the driving laser field of a quantity αL,
i.e.,

|� ′(t )〉 = D̂(αL )|�(t )〉, (A8)

where D̂(αL ) is the optical displacement operator [5], acting
over the laser mode. Recalling the following properties of this
operator [4]:

D̂(α)†D̂(α) = 1, (A9)

D̂(α)âD̂†(α) = â − α, (A10)

its introduction in our equations has two mutually related
consequences: it sets the initial state of the laser mode to a
vacuum state �L, and it transforms our TDSE into

ih̄
∂

∂t
|�(t )〉 = [Ĥ0 − eEL(t ) · R̂ − eÊQ(t ) · R̂]|�(t )〉

= [Ĥsc − eÊQ(t ) · R̂]|�(t )〉. (A11)

Here, EL(t ) accounts for the classical electric field part of
the laser pulse

EL(t ) = −ih̄g(ωL ) f (t )[α∗
LeiωLt − αLe−iωLt ], (A12)

so Ĥsc represents the semiclassical part of our Hamiltonian
[22]. On the other hand, ÊQ(t ) is the quantum correction term
defined as in Eq. (A7).

Lastly, we move to the interaction picture with respect to
the semiclassical Hamiltonian Ĥsc,

|�(t )〉 = T exp

[
−i

∫ t

t0

dt ′Ĥsc(t ′)/h̄

]
|ψ (t )〉, (A13)

where T is the time-ordering operator. This last transforma-
tion leads us to the final form of our TDSE, which we will use
throughout this manuscript, i.e.,

ih̄
∂

∂t
|ψ (t )〉 = −eÊQ(t ) · R̂H (t )|ψ (t )〉, (A14)

where eR̂H (t ) denotes the time-dependent dipole operator in
the considered semiclassical interaction picture, acting exclu-
sively on the electronic degrees of freedom. This evolution
drives the dynamics of the field and the electron, which may
end up in the ground or continuum states. On the other hand,
we consider that the electron will rarely end up in a bound-
excited state.

APPENDIX B: QUANTUM OPTICAL DESCRIPTION
OF HIGH-HARMONIC GENERATION

In the HHG process, the electron gets first transferred to the
continuum via tunneling ionization due to the strong laser field
we are applying, and later on it recombines with the parent
ion that was left behind, ending up again in the ground state
of the system. Therefore, in order to get information about the
HHG photonic quantum state, we condition Eq. (A14) onto
the atomic ground state |g〉, i.e.,

ih̄
∂

∂t
〈g|ψ (t )〉 = −ÊQ(t ) · 〈g|eR̂H (t )|ψ (t )〉. (B1)

Defining the identity operator as

1 = |g〉〈g| +
∑
φb

|φb〉〈φb| +
∫

dφc|φc〉〈φc|, (B2)

where we denote with the discrete sum the set of atomic bound
excited states, and with the integral the set of continuum
states, we introduce it in Eq. (B1) to get

ih̄
∂

∂t
〈g|ψ (t )〉 = − ÊQ(t ) ·

[
dH (t )〈g|ψ (t )〉

+
∑
φb

dH (φb, t )〈φb|ψ (t )〉

+
∫

dφcdH (φc, t )〈φc|ψ (t )〉
]
. (B3)

In this last expression, we denote with dH (t ) =
〈g|eR̂H (t )|g〉 the quantum averaged time-dependent dipole
moment and with dH (φk, t ) = 〈g|eR̂H (t )|φk〉 the matrix ele-
ment between the ground state and state |φk〉, where k can
take values b or c depending on whether the state belongs to
the bound excited states or to the continuum region of the
spectrum, respectively. Each of these terms is multiplied by
the probability amplitude of finding the electron either in the
ground state, in another excited bound state, or in an excited
continuum state. In the first attempt to solve the problem,
we will assume that these two last terms are very small in
comparison to the first one, which is a fair assumption as the
electron hardly remains in an excited bound/continuum state
[22,23] at the end of the pulse. Therefore, our TDSE adopts
the following form:

ih̄
∂

∂t
|�(t )〉 = −ÊQ(t ) · dH (t )|�(t )〉, (B4)

where |�(t )〉 = 〈g|ψ (t )〉. Here, dH (t ) can be easily calculated
by numerically solving the TDSE, or by means of the strong-
field approximation (SFA) theory [22,23,53]. Whatever the
method used, this equation can be easily solved as it is written
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as a linear combination of photon creation and annihilation
operators for the different modes considered in the problem.
This has a natural implication, which is that the final solution
is given by a product state of all the modes participating in the
process,

|�(t )〉 = |�q=1(t )〉 ⊗ |�q=2(t )〉 ⊗ · · · ⊗ |�q=cutoff(t )〉,
(B5)

so we can solve the equation for a given q and then gener-
alize the result to the rest. Thus, the single-mode version of
Eq. (B4) which we will now deal with is

ih̄
∂

∂t
|�q(t )〉 = −Êq(t ) · dH (t )|�(t )〉 = Ĥq(t )|�(t )〉, (B6)

where

Êq(t ) = −ih̄g(ωL ) f (t )
√

q[b̂†
qeiqωLt − b̂qe−iqωLt ]. (B7)

In general, we can write the solution to this equation as
[76]

|�q(t )〉 = Ûq(t, t0)|�q(t0)〉, (B8)

where Û (t, t0) is our time-evolution operator. Furthermore,
we can split our time interval in N steps of size �t , which is
typically defined to be inversely proportional to N , such that
we can write this operator as

Ûq(t, t0) = lim
N→∞

N−1∏
i=0

Ûq(ti+1, ti ), (B9)

where we identify tN = t . Therefore, we can write each of the
unitary operators appearing in the previous product as

Ûq(ti+1, ti ) = exp[−iĤq(ti+1)�t/h̄]. (B10)

Let us take a closer look at the commutation relation be-
tween Ĥq(t ) defined at two different times t and t ′,

i[Ĥq(t ), Ĥq(t ′)] = − 2qh̄2 f (t ) f (t ′)

× (g(ωL ) · dH (t ))(g(ωL ) · dH (t ′))

× sin (qωL(t − t ′))1. (B11)

As we can see, this term is a function proportional to the
identity operator, something that favors the implementation of
the Baker-Campbell-Hausdorff (BCH) formula [6], i.e.,

eX̂ eŶ = eẐ , (B12)

where

Ẑ = X̂ + Ŷ + 1
2 [X̂ , Ŷ ] + 1

12 [X̂ , [X̂ , Ŷ ]] + · · · , (B13)

to join all the exponential operators in Eq. (B9), as we only
have to keep the first three terms on the right-hand side of
Eq. (B13) since all the other terms commute. Notice that
each time we join two consecutive operators, we get an extra
exponential term from the commutation relation in Eq. (B11).
The exponent of such a term adopts the following form:

iϕq(t ) = − i

2

N−1∑
j=1

j∑
i=0

[Ĥq(t j ), Ĥq(ti )]�t2/h̄2 (B14)

and the final time-evolution operator reads

Ûq(t, t0) = lim
N→∞

exp[−i

( N−1∑
i=0

Ĥq(ti)

)
�t/h̄]eiϕq (t ), (B15)

where in the exponential operator term we naturally recover
the definition of an integral. Thus, according to the definition
of Ĥq(t ) given in Eq. (B6), the previous unitary operator can
be written, for the case of the fundamental mode (q = 1), as

ÛL(t, t0) = exp[δαLâ† − δα∗
Lâ]eiϕL (t ), (B16)

which is a displacement in the photonic phase space of a
quantity δαL defined by

δαL(t ) = g(ωL ) ·
∫ t

t0

dτ f (τ )dH (τ )eiωLτ . (B17)

Therefore, incorporating the action of Eq. (B15) over the
harmonic modes, we finally get the final quantum optical
HHG state,

|�(t )〉 = eiϕL (t )|(αL + δαL )e−iωLt 〉 ⊗ eiϕ2(t )|β2e−i2ωLt 〉
⊗ · · · ⊗ eiϕq (t )|βqe−iqωLt 〉 ⊗ · · · , (B18)

where we have returned to the original photonic frame of
reference, that is, we have undone the initial transformations
depicted in Eqs. (A5) and (A8). Note that here the iϕq(t )
are defined as in Eq. (B14) once the limit N → ∞ has been
considered. Similarly to the δαL, the βq terms are defined as

βq(t ) = √
q g(ωL ) ·

∫ t

t0

dτ f (τ )dH (τ )eiqωLτ . (B19)

The results obtained until now are valid for the single-atom
case. For the N-atomic case, assuming that each atom con-
tributes to the HHG process coherently in a phase-matched
way, the definitions of δαL and βq are reformulated as

δαL(t ) = Ng(ωL ) ·
∫ t

t0

dτ f (τ )dH (τ )eiωLτ , (B20)

βq(t ) = N
√

q g(ωL ) ·
∫ t

t0

dτ f (τ )dH (τ )eiqωLτ . (B21)

Note that in this case, the N-atomic wave function will be
affected by an overall phase coming from the BCH relation
that does not affect the phase-matching conditions, which
are solely determined by the phase of the generated coher-
ent states. To give a physical meaning to δαL and βq within
the electron recollision picture, we will use the strong-field
approximation theory to provide a solution to the integrals in
Eqs. (B20) and (B21). According to the SFA, it can be shown
[22] that the mean value of the dipole operator dH (t ) reads

dH (t ) = i
∫ t

t0

dt ′
∫

dv d∗
(

p − e

c
AL(t ′)

)
e−iS(p,t,t ′ )

× EL(t ′)d

(
p − e

c
AL(t ′)

)
+ c.c., (B22)

where AL(t ) is the vector potential of the laser field defined as
EL(t ) = −(1/c)∂AL(t )/∂t , p = v + (e/c)AL(t ) is the canoni-
cal momentum whereas v is the electron’s kinetic momentum,
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d(p − (e/c)AL(t ′)) is the matrix element of the dipole opera-
tor between the atomic ground state and the continuum state
|p − (e/c)AL(t ′)〉, and S(p, t, t ′) is the semiclassical action
given by

S(p, t, t ′) = 1

2

∫ t

t ′
dτ

[
p − e

c
AL(τ )

]2

+ Ip(t − t ′), (B23)

where Ip is the ionization potential.
For the sake of simplicity, we will assume that the used

laser field consists of a monochromatic field of frequency ωL,
so that we can set f (t ) = 1 in Eqs. (B20) and (B21), which
now read

δαL(t ) = Ng(ωL ) ·
∫ t

t0

dτ dH (τ )eiωLτ , (B24)

βq(t ) = N
√

q g(ωL ) ·
∫ t

t0

dτ dH (τ )eiqωLτ . (B25)

The semiclassical action shown in Eq. (B23) is a highly
oscillating function that leads to a highly oscillating exponent
in Eq. (B22), and allows for a solution to the triple integration
appearing in Eqs. (B24) and (B25) by means of the saddle-
point approximation. Therefore, the integrals in Eqs. (B24)
and (B25) are completely characterized by the saddle points
determined by the set of variables (ps, tr, ti ) fixed by the fol-
lowing three equations, which have been extensively studied
in the past within the context of the semiclassical three-step
model [22,23]: [

ps − e
c AL(ti )

]2

2
+ Ip = 0, (B26)

∫ tr

ti

dτ

[
ps − e

c
AL(τ )

]
= 0, (B27)

[
ps − e

c AL(tr )
]2

2
+ Ip = qωL. (B28)

In brief terms, the above equations define the three steps
of the recollision process: (B26) defines the ionization time
ti, (B27) the electron’s return to the parent ion, and (B28)
the recombination time tr associated with the generation of
high harmonics with frequencies qωL > Ip. On the one hand,
these equations imply that the shift δαL of the coherent state
is directly related to the electron ionization and acceleration
processes. On the other hand, they also show that the well-
known features of the HHG process are transferred to the
coherent states of the harmonic field, that is, the βq’s contain
information about the spectral phase and amplitude distribu-
tion of the emitted harmonics. In fact, this can be shown by
calculating the spectrum of the generated harmonics, which
can be obtained from their energy 〈Ĥf 〉em = ∑

q h̄ωqnq. In
this expression, nq is the number of photons at frequency
ωq = qωL, which, according to Eq. (B21), is given by

nq = N2|g(ωq) · dH (qωL )|2. (B29)

To obtain Eq. (B29), we have sent the integration limits
to ±∞, implying that the electric field is introduced at t0 =
−∞ and lasts until t = +∞, so that the integral appearing

in Eq. (B25) represents the Fourier transform of the mean-
valued dipole dH (qωL ). Considering all possible frequencies,
its summation can be rewritten as an integral, and the energy
of the emitted harmonics reads

Eem = Veff

(2πc)3

∫
d� dω N2ω3|g(ω) · dH (ω)|2, (B30)

where d� represents the infinitesimal solid angle element.
Substituting the definition of g(ωL) into Eq. (B30), we find
for its integrand

EHHG(ωq) ∝ N2ω4
q|dH (ωq)|2, (B31)

which corresponds to the expression of the HHG spectrum
obtained by the semiclassical theory [22,23].

APPENDIX C: ANALYSIS OF THE COHERENT SHIFT
IN THE FUNDAMENTAL MODE

As mentioned in the text and explicitly developed in Ap-
pendix B, the shift in the fundamental mode δαL is related
to the absorbed part of the driving field that is necessary
for generating the harmonic photons; its properties can be
related to the exchange of photons during the interaction. In
particular, we are interested in the probability of absorbing
n photons during the ionization and acceleration processes.
For that reason, we consider a coherent state |δαL(t, t0)〉 and
compute the probability distribution of having n photons on it

Pn(t, t0) = |〈n|δαL(t, t0)〉|2

= |δαL(t, t0)|2n

n!
e−|δαL (t,t0 )|2 . (C1)

We note that this quantity is related to the probability of
absorbing n photons during the ionization and acceleration
processes. We further introduce the average probability of
having n photons in the above coherent state within a cycle
of the field that starts at t0 and finishes at time T as

P̃n = 1

T − t0

∫ T

t0

dtPn(t, t0). (C2)

The numerical results obtained from this calculation are
shown in Fig. 9 for three different intensities of the driving
field. As we can see, for each of the curves we get a local
maximum in the probability that shifts to bigger values of the
number of photons n as the intensity of the field increases.
This is consistent with the harmonic plateau structure obtained
for the HHG spectrum. As the intensity increases, the har-
monic cutoff is extended to higher photon number values and,
as a consequence, photons of higher frequency are achievable
through the HHG process. Thus, given that for generating a
photon of frequency nωL a number n of IR photons need
to be absorbed, then in order to get a plateau structure for
the harmonic spectrum, the probability of absorbing IR pho-
tons should increase as we move toward the harmonic cutoff,
reaching a maximum at this point and decreasing afterwards.
To check this, we look at the value of n for which we find
a local maximum in the probability (the maximum obtained
for n > 2) for each of the considered intensities. In particular,
in Fig. 9 these maxima are placed at ncutoff ≈ 7, 12, and 15
from the lowest to the highest intensity, respectively, which
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FIG. 9. Probability of having n photons in the coherent state
|δαL〉 averaged in time. Normalized average probability of a single
atom to absorb n photons for three different electric field ampli-
tudes, EL ≈ 0.053 a.u. (green squared-dotted curve), EL ≈ 0.046 a.u.
(red rhomboid-dotted curve), and EL ≈ 0.038 a.u. (blue round-dotted
curve) of the driving field (in atomic units). The results have been
obtained by integrating over one cycle of a Gaussian-shaped pulse
with central wavelength λL = 800 nm.

are in agreement with the cutoffs given by the maximum
kinetic energy that an electron can get in the HHG process
with the corresponding intensities (the theoretical values for
the cutoff are nth = 7.71, 11.3, and 15.0, respectively). Note
that in comparison to Eq. (B31), here we do not obtain a
multipeak structure involving only the odd harmonics. This
is because δα describes the amount of IR photons absorbed
during the ionization and acceleration processes affecting the
fundamental laser mode, which later on will be distributed
along the generated harmonics.

APPENDIX D: CONDITIONING ONTO HHG:
GENERATION OF SCHRÖDINGER OPTICAL

“KITTEN” AND “CAT” STATES

As mentioned in the main text, the time-evolved state ob-
tained after conditioning the electron state to be end up in the
ground state of the system is given by

|�(t )〉 = eiϕL (t )|(αL + δαL )e−iωLt 〉 ⊗ eiϕ2(t )|β2e−i2ωLt 〉
⊗ · · · ⊗ eiϕq (t )|βqe−iqωLt 〉 ⊗ · · · , (D1)

The key action for creating the nonclassical states of light
is the postselection of the coherent shifted IR state over the
part that includes at least one harmonic photon. It was shown
in [58] that conditioning the harmonic modes to be found in
the state

⊗cutoff
q=2 |βq〉 and considering very high values of the

harmonic cutoff, the final quantum optical state of the infrared
mode is given by (up to normalization) by

|�post〉 ≈ |αL + δαL〉 − 〈αL|αL + δαL〉|αL〉. (D2)

In the following, we will explicitly develop the different
situations studied in the main text that lead us to the generation
of Schrödinger optical “kitten” and cat states.

1. Obtaining a “kitten” state

The kitten state is obtained in the limit when
〈αL|αL + δαL〉 → 1, which corresponds to the limit where
|δαL| → 0. This is valid whenever δα adds a depletion to

the initial coherent state, a condition that is verified when
the phases of δα and α, which we denote here as θδ and θα ,
respectively, satisfy

π

2
+ arcsin

( |δαL|
2|αL|

)
+ θα

< θδ <
3π

2
− arcsin

( |δαL|
2|αL|

)
+ θα. (D3)

To work in regimes of vanishing |δαL|, we will consider an
expansion of the postprocessed state presented in Eq. (D2) in
terms of powers of |δαL|. With that purpose, we first write our
shifted coherent state |αL + δαL〉 as

|αL + δαL〉 = D̂(αL )e
1
2 (α∗

LδαL−αδα∗
L )D̂(δαL )|0〉, (D4)

where we have considered the following property of the dis-
placement operator:

D̂(αL + δαL ) = e
1
2 (α∗δαL−αLδα∗

L )D̂(αL )D̂(δαL ). (D5)

Introducing here the definition of the displacement opera-
tor D(α) and in particular its polynomial expansion,

D̂(δαL ) = exp[δαLâ† − δα∗
Lâ]

=
∞∑

n=0

(δαLâ† − δαLâ)n

n!

=
∞∑

n=0

|δαL|n (eiθδ â† − e−iθδ â)n

n!
, (D6)

which, introduced in Eq. (D4), leads to the desired polynomial
expansion in |δα|,

|αL + δαL〉 = D̂(αL )e
1
2 (α∗

LδαL−αLδα∗
L )

×
∞∑

n=0

|δαL|n (eiθδ â† − e−iθδ â)n

n!
|0〉, (D7)

and whose scalar product with |αL〉 is given by

〈α|αL + δαL〉 = e
1
2 (α∗

LδαL−αLδα∗
L )〈0|δαL〉

= e
1
2 (α∗

LδαL−αLδα∗
L )e−|δαL |2/2

= e
1
2 (α∗

LδαL−αLδα∗
L )

∞∑
n=0

1

2n

|δαL|2n

n!
. (D8)

Combining Eqs. (D7) and (D8) with Eq. (D2), we then get

|�post〉 = e
1
2 (α∗δαL−αLδα∗

L )D̂(αL )

×
∞∑

n=1

(
|δαL|n (eiθδ â† − e−iθδ â)n

n!
− 1

2n

|δαL|2n

n!

)
|0〉,

(D9)

where we start the sum at n = 1 because the n = 0 term
cancels due to the equal contribution of the two terms in the
difference. Thus, the previous difference leads to

|�post〉 = e
1
2 (α∗

LδαL−αLδα∗
L )D̂(αL )

× (δαLâ†|0〉 + O(|δαL|2)), (D10)
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which up to first order in |δα| corresponds with the defini-
tion of a displaced Fock state. Furthermore, we note that the
photon number probability distribution of this state is given
by

P(n) =
∣∣∣∣∣ n

αL
− α∗

L

∣∣∣∣∣
2 |αL|2n

n!
e−|αL |2 , (D11)

and its Wigner function [6] is characterized by

W (β ) = 2

π
tr(D̂(β )�̂D̂(−β )|�post〉〈�post|)

= 2

π
(4|β − αL|2 − 1)e|β−αL |2/2. (D12)

For obtaining this expression, we have used the Wigner
function definition of Ref. [77], where �̂ denotes the parity
operator, whose action over the displacement operator is given
by D(−α) = �D(α)�.

2. Obtaining a genuine “cat” state

On the other hand, in the regime where 0 <

〈αL + δαL|αL〉 < 1, we obtain a genuine “cat” state [shown
in Eq. (D1)] with photon number probability distribution

P(n) = 1

Ncat
|(αL + δαL )ne−|αL+δαL |2/2

− 〈αL|αL + δαL〉αne−|αL |2/2|2, (D13)

and Wigner function

W (β ) = 2

πNcat

[
e−2|β−αL−δαL |2 + e−|δαL |2 e−2|β−αL |2

− (e2(β−αL )δα∗
L + e2(β−αL )∗δαL )

× e−|δαL |2 e−2|β−αL |2], (D14)

where Ncat = 1 − e−|δαL |2 is the normalization factor for
Eq. (D2).

We finally note that in the regime where |δαL| becomes
large enough so that 〈αL|αL + δαL〉 → 0, we get a coher-
ent shifted state with photon number probability distribution
given by a Poissonian

P(n) = e−|αL+δαL |2 |αL + δαL|2n

n!
, (D15)

and Wigner function

W (β ) = 2

πNcat
e−2|β−αL−δαL |2 . (D16)

APPENDIX E: QUANTUM OPTICAL DESCRIPTION OF
ABOVE-THRESHOLD IONIZATION

We showed in the main text that, under the strong-field
approximations and within the single active electron scenario,
the quantum optical state conditioned to ATI is given by

|�̃(v, t )〉 ≈ i

h̄

N−1∑
j=0

∫ t j+1

t j

dt ′ ÊL(t ′) · d∗
H (v, t ′)|( j + 1)�〉,

(E1)

where |�(t )〉 is given by Eq. (D1) before going back to the
laboratory frame (which we get by setting αL = 0 in the
mentioned state).

In the main text, we consider two possible strategies for
deriving the reduced density matrix of the electromagnetic
field after conditioning to ATI:

(i) We can condition on ATI electrons with a specific out-
going direction and kinetic momentum, v. In this approach the
reduced density matrix of the system is given by

|�(v, t )〉〈�(v, t )|, (E2)

but the experimental detection is clearly tougher: even at fixed
kinetic momentum with some error tolerance, there are not so
many electrons to detect. We term this case single-ionization
ATI states.

(ii) Alternatively, we can condition on all ATI electrons,
i.e., consider the reduced density matrix integrated over all
outgoing momenta,∫

d3v|�(v, t )〉〈�(v, t )|. (E3)

Calculations and theoretical description are then more
complex, but detection is easier.

In the following, we explicitly elaborate on the calculations
that lead to the states presented in the main text when consid-
ering these two different scenarios.

1. Analysis for single-ionization ATI states

The state shown in Eq. (E1) is a superposition of the
different coherent shifts generated during the ionization and
acceleration processes, each of them multiplied by the matrix
element d∗

H (v, t ′), which determines its correlation with the
electron’s state, associating each shift with the probability
amplitude of having a transition from the ground state to
the continuum state |v〉. However, this state only considers
transitions to a particular continuum state.

In this subsection, we are going to consider single-
ionization phenomena, i.e., laser ionization phenomena at a
given kinetic momentum energy, corresponding to outgoing
velocity v, so that the final ATI quantum state is indeed well
characterized by the pure state given in Eq. (E1). Therefore,
the obtained results would correspond to an experimental
setting where we are able to measure the kinetic energy and
direction of the generated photoelectrons, and discard the
results whenever the measured kinetic energy and direction
are different from those of v. This can be achieved by using
the ATI photoelectron signal recorded by means of a time-of-
flight electron spectrometer (see Fig. 10).

In particular, and with the main purpose of obtaining an-
alytical expressions, we will restrict this analysis to time
intervals for which the applied strong field is constant, that
is, f (t ′) = 1 in Eq. (A4) for t ′ ∈ [t0, t]. This implies that
the amount of photons absorbed every half-cycle of the field
would be the same, in opposition to Fig. 1(b) in the main
text, where the absorption varies every half-cycle due to the
modulation of the applied pulse. In practice, this would cor-
respond to a situation where the laser source is a “long” IR
pulse, meaning that we can find several cycles with almost the
same peak strength on its central part. Thus, and as a first step,
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FIG. 10. Operation principle of the experimental approach. (a) Experimental setup. BS1: IR beam separator. |αL〉: coherent-state of IR beam
passing through BS1. |αr〉: coherent-state IR beam reflected by BS1. M: IR plane mirrors. L1,2: lens. HS: harmonic separator which reflects the
high harmonics and lets the IR beam pass through. HH: high harmonics. BS2,3: IR beam separator and splitter, respectively. PD, PD0, PDout,
PDHH: IR and HH photodetectors. TOF e-Spec.: μ-metal shielded time-of-flight spectrometer that could be used for the measurement of the
ATI electrons. The voltage (V ) can serve for the energy selection of the electrons reaching the TOF detector. iφ , iout, i0, iHH are the photocurrent
values recorded for each laser shot. These were used by the QS in order to condition the |αL + δαL〉 state on the HHG process. ie is the signal of
the TOF spectrometer that could be used by QS for conditioning on ATI process. Just before PDHH, a 150-nm-thick aluminum filter was placed
(not shown) in order to select the harmonics with q � 11. IR0: IR beam used to measure the shot energy of the driving field. λ/2: half-IR-wave
plates. A: apertures. F, Fin: Neutral density filters of approximately the same transmission. Fr : neutral density filters used to control the energy
of the reference coherent state of the laser field Er . |α + δα〉: IR state after the attenuation. All signals were recorded by a high dynamics
range boxcar integrator and saved/analyzed by computer (PC) software. |�post〉 is the quantum state of field entering the balance detector after
conditioning on HHG, and Ein is the corresponding electric field. |αr〉 is the reference coherent state of the laser used by the QT method, and Er

is the corresponding electric field. ϕ: the controllable phase shift introduced in the reference beam. (b) HHG spectra measured for two different
xenon gas densities in the interaction region. The blue and green lines show the harmonics recorded at high and low gas densities that have
been used for the generation of the optical cat and kitten states shown in Figs. 7(b) and 7(c) of the main text of the manuscript. The harmonic
signal at low gas densities is about 25 times lower than the harmonic signal recorded at high gas densities. (c) Probability of absorbing IR
photons toward the harmonic generation (red line). The multipeak structure reflects the spectrum of the emitted harmonics as is described in
Appendix D and Refs. [50,57,66]. The black dashed-dotted curve is the best fit of an analytical function given by the sum of a sequence of
Gaussian functions. The black shaded area shows the background distribution that resulted by fitting a Gaussian function on the data (black
squares) obtained by subtracting the minima of the raw data from the minima of the black dashed-dot fit function. The inset shows the joint
XUV-vs-IR photon number distribution using the signal of iHH (SPDHH ) and iout (SPDout ) (gray points). The red points show the selected points
along the anticorrelation diagonal. The distribution was created by keeping the energy stability of the driving field at the level of ≈1%, and
after subtracting the electronic noise from each laser shot.
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we will rewrite Eq. (E1) as a sum of integrals defined for every
half-cycle of the field

|�(v, t )〉 = i

h̄

N−1∑
j=0

∫ t j+1

t j

dt ′ ÊQ(t ′) · d∗
H (v, t ′)

× |δα(t ′)〉
cutoff⊗
q=2

|βq(t ′)〉, (E4)

where N is the total number of half-cycles, and we identify
tN = t . Note that the conditioning over a single value of
direction and kinetic momentum v leads to an entangled state
between all the modes participating in the process. Hereupon,
and in order to study the final state obtained for the IR, we will
assume that during the ATI process the harmonic coherent-
state amplitudes βq stay very close to the vacuum. Thus, if
under this assumption we project Eq. (E4) over the vacuum
state for the harmonics, we can approximate our state by

|�̃(v, t )〉 ≈ i

h̄

N−1∑
j=0

∫ t j+1

t j

dt ′ ÊL(t ′) · d∗
H (v, t ′)|δα(t ′)〉, (E5)

where |�̃(t )〉 = 〈0q|
⊗

q |�(v, t )〉, and ÊL is the electric field
operator acting over the fundamental mode, i.e., the first term
of Eq. (A7).

Furthermore, under the “long” IR pulse considerations, the
amount of photons absorbed every half-cycle is the same, that
is, δα(t j+1) − δα(t j ) = �. This motivates us to consider a
discretization of the values of δα(t ) appearing on each term
of the sum in Eq. (E5), such that the value of δα(t ) in each
integral term adopts the value of the coherent state obtained at
the end of the cycle, that is,

|�̃(v, t )〉 ≈ i

h̄

N−1∑
j=0

∫ t j+1

t j

dt ′ ÊL(t ′) · d∗
H (v, t ′)|( j + 1)�〉.

(E6)

Of course, this approximation is not always valid. One has
to guarantee that two consecutive states | j�〉 and |( j + 1)�〉
are comparable to each other. Otherwise, smaller steps have
to be considered in the discretization, which may not allow
us to write the shift � as a time-independent quantity. A
natural way of establishing such a comparison is in terms of
the overlap between these two states, i.e.,

〈 j�|( j + 1)�〉 = exp

[
−|�|2

2

]
. (E7)

Thus, we will restrict to values of |�| < 0.95, for which
the overlap between these two coherent states is bigger than
1 − e−1. Under these considerations, the state obtained in
Eq. (E6) is given as a superposition of different coherent
states, where each of them is affected by the electric field
operator evaluated at time t ′. Apart from this, one of the
main differences of this state with respect to the one obtained
through HHG, in Eq. (D2), is that in the former more than two
coherent states intervene in the final superposition, depending
on the number of half-cycles N .

In Eq. (E6), each of these coherent states is weighted by
the quantum optical version of the ATI spectrum taken at

every half-cycle of the field. This can be seen more clearly
if, assuming a linearly polarized field, we substitute Eq. (A4)
with the considered approximations in Eq. (E6),

|φ(v, t )〉 ≈ h̄g(ωL )
N−1∑
j=0

( ∫ t j+1

t j

dt ′ d∗
H (v, t ′)eiωt ′

â

− d∗
H (v, t ′)e−iωt ′

â†

)
|( j + 1)�〉, (E8)

where

d∗
H (v, t ) = 〈ψsc(t )|eX̂Usc(t )|v〉

= 〈ψsc(t )|eX̂Usc(t )
∣∣∣p − e

c
AL(t0)

〉
. (E9)

In this last expression, X̂ is the position coordinate operator
affecting the electron, Ûsc(t ) is the time evolution operator
of the semiclassical Hamiltonian appearing in Eq. (A11), and
|ψsc(t )〉 = Usc(t )|g〉 is the ground state of the electron evolved
with the previous propagator. Furthermore, we have condi-
tioned over kinetic energies that satisfy v = p − (e/c)AL(t0).
Under the strong field assumptions, we can write the previous
matrix element as

d∗
H (v, t ) = 〈ψsc(t )|eX̂

∣∣∣∣p − e

c
AL(t )

〉

× e−i[S(p,t,t0 )−Ip(t−t0 )], (E10)

with S(p, t, t0) the semiclassical action given in Eq. (B23).
By expanding this expression using the form of |ψsc(t )〉 given
by the semiclassical analysis [22], one can see that this term
can be written as the sum of two terms characterizing direct
ionization phenomena and rescattering processes [78]. In our
case, we are only interested in direct ionization processes, so
we restrict our calculations to values of the electron kinetic
energy lower than 2Up, with Up the ponderomotive potential.
Thus, we write this matrix element as

d∗
H (v, t ) ≈ 〈g|eX̂

∣∣∣p − e

c
AL(t )

〉
e−i[S(p,t,t0 )−Ipt]. (E11)

Now, we explicitly compute the expression for the Wigner
function of the state in Eq. (E6). With that purpose, let us first
define the quantities Aj and Bj as

Aj = 1

h̄
g(ωL )

∫ t j+1

t j

dt ′d∗
H (v, t )eiωt ,

(E12)

Bj = 1

h̄
g(ωL )

∫ t j+1

t j

dt ′d∗
H (v, t )e−iωt ,

where d∗
H (v, t ) is given as in Eq. (E11), such that the state in

Eq. (E6) can be written as

|�̃(v, t )〉 = i
N−1∑
j=0

(Ajâ − Bjâ
†)|( j + 1)�〉. (E13)

Introducing here the definition of the photonic quadrature
operators, x̂L and p̂L given in the main text, we can rewrite the
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previous state as

|�̃(v, t )〉 = i
N−1∑
j=0

(C(−)
j x̂L + iC(+)

j p̂L )|( j + 1)�〉, (E14)

where C±
j = (1/

√
2)(Aj ± Bj ). Thus, for computing the

Wigner function by means of

W (x, p) = 1

π h̄

∫ ∞

−∞
〈x + y|ρ̃ATI-IR|x − y〉e−i2py/h̄, (E15)

we first give an expression for the matrix element of
ρ = |�̃(v, t )〉〈�̃(v, t )| between two different position states
|x ± y〉,

〈x + y|ρ|x − y〉 =
[N−1∑

j=0

C(+)
j 〈x + y|x̂L|( j + 1)�〉

+ iC(−)
j 〈x + y| p̂L|( j + 1)�〉

]

×
[N−1∑

k=0

C(+)∗
k 〈(k + 1)�|x̂L|x − y〉

− iC(−)∗
k 〈(k + 1)�| p̂L|x − y〉

]
, (E16)

with

〈x + y|x̂L|( j + 1)�〉 = (x + y)G+, j,
(E17)

〈x + y| p̂L|( j + 1)�〉 = −i
∂G+, j

∂ (x + y)
,

where the functions G±, j = 〈x ± y|( j + 1)�〉 are given by

〈x|α〉 = 1

π1/4
exp[− [x − √

2 Re(α)]2

2
+ ix

√
2 Im(α)].

(E18)

With all this, the matrix element in Eq. (E16) reads

〈x + y|ρ|x − y〉 =
N−1∑

j,k

[
C(−)

j C(−)∗
k (x2 − y2)G+, jG

∗
−,k

+ C(+)
j C(+)∗

k

∂G+, j

∂ (x + y)

∂G∗
−,k

∂ (x − y)

+ C(−)
j C(+)∗

k (x + y)G+, j
∂G∗

−,k

∂ (x − y)

+ C(+)
j C(−)∗

k (x − y)
∂G+, j

∂ (x + y)
G∗

−,k

]
,

(E19)

and thus the Wigner function can be computed by introducing
this expression for the matrix element inside Eq. (E15). Note
that this expression will only contain derivatives involving
Gaussian functions, so it can computed analytically. In par-
ticular, we have performed these calculations in atomic units
(h̄ = 1, e2 = 1, me = 1, and kc = 1/4πε0 = 1). In partic-
ular, we considered the ionization potential of a hydrogen
atom Ip = 0.5 a.u., the frequency for the fundamental mode

ω = 0.057 a.u., and the amplitude of the electromagnetic field
EL = 0.053 a.u.

2. ATI state conditioned over all possible outgoing momenta

The density matrix that characterizes the total IR ATI state
involving all the possible momenta for the generated photo-
electrons is

ρATI =
∫

dv|�(v, t )〉〈�(v, t )|�(v, t )

=
∫

dv
∫ t

t0

dt ′
∫ t

t0

dt ′′ ÊQ(t ′) · d∗
H (v, t ′)

× |�(t ′)〉〈�(t ′)|�(t ′′)dH (v, t ′′) · ÊQ(t ′′), (E20)

which, taking into account the SFA version of the identity, i.e.,

1 ≈ |g〉〈g| +
∫

dv|v〉〈v|, (E21)

and considering for simplicity a linearly polarized light, can
be rewritten as

ρATI =
∫ t

t0

dt ′
∫ t

t0

dt ′′ÊQ(t ′)|�(t ′)〉〈�(t ′)|�(t ′′)ÊQ(t ′′)

× [〈d̂H (t ′)d̂H (t ′′)〉 − dH (t ′)dH (t ′′)], (E22)

where the term between brackets contains the difference be-
tween the correlation of the dipole operator at times t ′ and t ′′,
and the product of the mean values of such operators at the
corresponding times, both terms evaluated with respect to the
ground state of the system. For other possible field polariza-
tions, the expression adopts the same form but we would have
to consider contributions coming from the different polariza-
tion terms for the term between brackets. Obviously, while
measurement conditioned on all electrons should be easier, the
theoretical analysis is tougher as it requires evaluation of the
two-time correlation functions of the dipole moment. This can
be done, in principle, using SFA or even TDSE, but it leads to
much more complicated expressions, which will be analyzed
elsewhere [79].

To gain intuition about the IR ATI state obtained from
Eq. (E22), we are going to work within the same approxima-
tions that lead to Eq. (E5), and considering the simplifying
assumption that all the generated coherent shifts are iden-
tical and time-independent. In general this is not true, and
as discussed in Fig. 1 in the main text, the coherent shift is
continuously increasing along the pulse. However, for single-
photon ionization processes one may expect this shift to be
very small and, in some sense, indistinguishable from all
the other values it can take along the whole pulse duration.
Therefore, under this consideration the ATI state reads

ρ̃ATI-IR =
∫ t

t0

dt ′
∫ t

t0

dt ′′ ÊL(t ′)|δα〉〈δα|ÊL(t ′′)

× K (t ′, t ′′)eiϕ(t ′ )e−iϕ(t ′′ ), (E23)

where K (t ′, t ′′) = 〈d̂H (t ′)d̂H (t ′′)〉 − dH (t ′)dH (t ′′), and the ex-
ponential terms are the factors coming from the BCH formula,
which we have to explicitly consider as they cannot be factor-
ized now. Furthermore, if we introduce here the definition of
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part of the electric field operator that acts over the fundamental
mode [first term in Eq. (A4)], we get

ρ̃ATI-IR = h̄2|g(ωL ) · εμ,L|2
∫ t

t0

dt ′
∫ t

t0

dt ′′K (t ′, t ′′)

× [â†|δα〉〈δα|â†eiωL (t ′+t ′′ ) + â|δα〉〈δα|âe−iωL (t ′+t ′′ )

− â†|δα〉〈δα|âeiωL (t ′−t ′′ ) − â|δα〉〈δα|â†e−iωL (t ′−t ′′ )].
(E24)

Thus, one of the main advantages of the previous approxi-
mation is that the temporal part only affects the coefficients of
the obtained mixed state. This allows us to write Eq. (E22) as

ρ̃ATI-IR = −ih̄|g(ωL ) · εμ,L|
× [I1(t )â†|δα〉〈δα|â† + I2(t )â|δα〉〈δα|â
− I3(t )â†|δα〉〈δα|â − I4(t )â|δα〉〈δα|â†], (E25)

where we have defined

I1(t ) =
∫ t

t0

dt ′
∫ t

t0

dt ′′K̄ (t ′, t ′′)eiωL (t ′+t ′′ ), (E26)

I2(t ) =
∫ t

t0

dt ′
∫ t

t0

dt ′′K̄ (t ′, t ′′)e−iωL (t ′+t ′′ ), (E27)

I3(t ) =
∫ t

t0

dt ′
∫ t

t0

dt ′′K̄ (t ′, t ′′)eiωL (t ′−t ′′ ), (E28)

I4(t ) =
∫ t

t0

dt ′
∫ t

t0

dt ′′K̄ (t ′, t ′′)e−iωL (t ′−t ′′ ), (E29)

with K̄ (t ′, t ′′) = K (t ′, t ′′)eiϕ(t ′ )e−iϕ(t ′′ ).
The dipole correlator K (t ′, t ′′) is difficult to compute, since

it is not a quantity that can be obtained directly from the
numerical implementations of the TDSE, nor from a SFA
analysis. Thus, the approach we consider here in order to gain
intuition about what to expect from the obtained Wigner func-
tions is to look for some relations between the Ii(t ) coefficients
so that we can bring Eq. (E25) to a very simplified form, and
then study different limits regarding the coefficients. First of
all, we note that the K̄ (t ′, t ′′) satisfies K̄ (t ′, t ′′) = K̄∗(t ′′, t ′),
which allows us to conclude after some algebraic operations
that I1(t ) = I∗

2 (t ) and that I3(t ) and I4(t ) are real functions.
The above relations allow us to further simplify the final

form of ρ̃ATI-IR, and they provide us with the final form we use
for the Wigner function computation,

ρ̃ATI-IR = −ih̄|g(ωL ) · εμ,L|
× [I1(t )â†|δα〉〈δα|â† + I∗

1 (t )â|δα〉〈δα|â
− I3(t )â†|δα〉〈δα|â − I4(t )â|δα〉〈δα|â†]. (E30)

Then, using the definition of the Wigner function given in
[77], we get for our state

W (β ) = 2

πN
e− 1

2 |2β−δα|

× [I1(t )δα(2β − δα) + I∗
1 (t )δα∗(2β − δα)∗

− I3(t )|δα| − I4(t )(|2β − δα| − 1)], (E31)

where N is a normalization constant. As was mentioned be-
fore, the computation of the K (t, t ′) function is not trivial

at all, and in the strong-field community it is common to
approximate the absolute value of the Fourier transform of the
dipole-dipole correlator with the absolute value of the Fourier
transform given by the dipole, i.e., the fundamental compo-
nent of the HHG spectrum (cf. [80]). In our case, and to gain
insight about the form of the final Wigner function, we neglect
the effect of the exponentials with respect to (t ′ + t ′′) as we
expect their contribution to be lower than the ones provided
by (t ′ − t ′′), as their oscillation is faster. With this, one can
check that for different values of the weights provided by the
integrals I3(t ) and I4(t ), the final Wigner function presents
a similar behavior to that obtained in HHG. Because of the
form of the considered quantum state, this is something we
should expect since ÊL(t )|δα〉 ∝ |δα〉 when δα adopts very
large values.

APPENDIX F: OPERATION PRINCIPLE
OF THE EXPERIMENTAL APPROACH

An optical layout of the system is shown in Fig. 10(a).
Although the system can be implemented for conditioning on
HHG and/or ATI processes, here we will show its applicability
using the HHG process induced by the interaction of the
fundamental driving field with Xe gas. The approach has been
also discussed in Ref. [50]. The experiment was performed
using a linearly polarized ≈35 fs Ti:sapphire laser pulse of
λ ≈ 800 nm carrier wavelength and an interferometer. The
whole system was operating at 0.5 kHz repetition rate. The
IR laser beam was separated into the branches of the interfer-
ometer by a beam separator BS1. The IR beam reflected by
the BS1 (in the second branch of the interferometer) serves as
a reference beam of the quantum tomography (QT) method
and for measuring (by means of IR photodiode PD0) the
shot-to-shot energy fluctuations of the driving field. In the
first branch of the interferometer, the IR beam was focused
by means of a 15 cm focal length lens (L1) into a xenon
pulsed gas jet, where the HHG process takes place. In the
present experiment, the optimum intensity of the IR pulse in
the interaction region resulting in a maximum harmonic order
was ≈8 × 1013 W/cm2, while the maximum harmonic yield
was observed for a gas density in the order ∼1018 atoms/cm3.
The generated harmonics, after a reflection by a multilayer
infrared-antireflection coating plane mirror (HS) placed at
grazing incidence angle, was passing through a 150-nm-thick
aluminum filter, which selects all the harmonics with q � 11
[Fig. 10(b)]. The photon number of the XUV radiation was
measured by means of a calibrated XUV detector PDHH. A
portion of the IR field exiting the xenon gas was reflected
by the IR beam separator BS2 toward IR photodiode PDout

(operating in the linear regime) placed after a lens [used to
collect the photons on the surface of the diode, not shown
in Fig. 10(a)] and a neutral density filter (F ) which signifi-
cantly reduces the photon number and ensures the avoidably
of saturation effects. The photocurrent signals iHH, i0, iout of
PDHH, PD0, and PDout were used by the quantum spectrometer
(QS) to disentangle the high harmonic generation process
from all other processes induced by the interaction. The IR
field after BS2 was collimated by a planoconvex lens (L2)
while the mean photon number of the IR field (Ein), before
reaching the balanced detector of the QT, was reduced (by
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means of neutral density filters Fin) to the level of a few
photons per pulse, with the QS to select, for each laser shot,
only the IR photons related to the HHG. The QS approach
[57,66] relies on shot-to-shot correlation between the pho-
ton number of the generated harmonics (integrated signal of
q � 11) and the IR field exiting the medium [gray points in
the inset of Fig. 10(c)]. The conditioning to HHG is achieved
by selecting only the shots that provide a signal along the
anticorrelation diagonal of the joint distribution [red points
in the inset Fig. 10(c)]. By selecting these points, we collect
only the shots that are relevant to the harmonic emission,
and we remove the unwanted background associated with all
processes irrelevant to the harmonic generation. In this way,
we obtain the probability of absorbing IR photons towards the
harmonic generation [red line in Fig. 10(c)]. The IR absorp-
tion probability distribution consists in a multipeak structure
that corresponds to the harmonic order [57,66]. The black line
in Fig. 10(c) shows the remaining background distribution,
which has been subtracted from the data, as it is related only
with the ability of the present QS experimental apparatus to
remove all the shots associated with processes irrelevant to
the HHG process (for details, see Refs. [50,57,75]).

The Ein field was spatiotemporally overlapped on a beam
splitter (BS2) with a local oscillator laser field (Er), unaffected
by the interaction, coming from the second branch of the
interferometer, which consists of a piezobased delay stage that
introduces a controllable delay �τ (phase shift ϕ) between
the Er and Ein fields. The interfering fields outgoing from the
BS2 were detected by the diodes (PD) of a high bandwidth
(from DC to 350 MHz), high subtraction efficiency, and high
quantum efficiency balanced amplified differential photode-
tector, which provides at each value of ϕ the signal difference.
The photocurrent difference iϕ , as well as the photocurrent
values of the IR and HH detectors (iout, i0, iHH) in the QS, were
simultaneously recorded for each laser shot by a multichannel
16-bit high dynamic range boxcar integrator. For each shot,
the background electronic noise was recorded and subtracted
by the corresponding photocurrent signal by placing a sec-
ond time-gate in the boxcar integrator in times significantly
delayed compared to the arrival times of the photon signals.
Setting the delay stage around �τ ≈ 0, the characterization
of the quantum state of light was achieved by recording for
each shot the value of iϕ as a function of ϕ, by moving the
piezo from ϕ ≈ 0 to ϕ ≈ π . The homodyne data were scaled
according to the measured vacuum state quadrature noise.

APPENDIX G: RECONSTRUCTION
OF THE WIGNER FUNCTION

The values of the photocurrent difference iϕ are directly
proportional to the measurement of the electric field operator
Êin(ϕ) ∝ x̂ϕ = cos(ϕ)x̂ + sin(ϕ) p̂, and have been used for the
reconstruction of the Wigner function. When the xenon gas jet
and the QS are switched on, the homodyne detection system
provides the measurement x̂ϕ only when the IR field exiting
the atomic medium is conditioned on the HHG, leading to
the characterization of the light state |�post〉 = |αL + δαL〉 −
ξ |αL〉. Repeated measurements of x̂ϕ at each ϕ provide the
probability distribution Pϕ (xϕ ) = 〈xϕ|ρ̂|xϕ〉 of its eigenvalues
xϕ (where ρ̂ ≡ |�post〉〈�post| is the density operator of the

light state and |xϕ〉 is the eigenstate with eigenvalue xϕ). For
each data set in the range of 0 < ϕ < π around �τ ≈ 0, the
Wigner function was reconstructed by means of the inverse
radon transformation implemented via the standard filtered
backprojection algorithm [55,56]. The algorithm used to re-
construct the Wigner functions was applied directly to the
quadrature values xϕ,k , where k is the index of each value, us-
ing the formula [55,56] W (x, p) � 1

2π2N

∑N
k=1 K[x cos(ϕk ) +

p sin(ϕk ) − xϕ,k]. K (z) = 1
2

∫ ∞
−∞ |ξ | exp(iξz) dξ is called the

integration kernel with z = x cos(ϕk ) + p sin(ϕk ) − xϕ,k . The
numerical implementation of the integration kernel requires
the replacement of the infinite integration limits with a finite
cutoff frequency kc. To reduce the numerical artifacts (rapid
oscillations) and allow the details of the Wigner function to be
resolved, the value of kc was set to ≈3.7 for all measurements
presented here. An estimation of the error of the reconstructed
W (x, p) has been obtained by comparing (subtracting) the
ideal Wigner function of a coherent state from the Wigner
function of a coherent state reconstructed by the experimental
data. The deviation from the ideal case provides an error of
±0.004 in W (x, p). The accuracy of measuring the photon
number was in the range of ≈1.5% to ≈3.5% of the mean for
high and low photon numbers, respectively. This was obtained
following the aforementioned procedure using the density
matrices ρnm in Fock space (n, m). The mean photon number
was obtained by the diagonal elements ρnn of the ρnm and the
relation 〈n〉 = ∑

nρnn.

APPENDIX H: ERROR ANALYSIS OF THE
RECONSTRUCTED WIGNER FUNCTION

AND THE PHOTON NUMBER

The numerical implementation of the integration kernel
for the reconstruction of the Wigner function requires the
replacement of the infinite integration limits with a finite
cutoff frequency kc. To reduce the numerical artifacts (rapid
oscillations) and allow the details of the Wigner function to be
resolved, the value of kc was set to ≈3.7 for all measurements
presented here. An estimation of the error of the reconstructed
W (x, p) has been obtained by comparing (subtracting) the
ideal Wigner function of a coherent state from the Wigner
function of a coherent state reconstructed by the experimental
data. This is shown in Fig. 11(a) as a function of kc. The de-
viation from the ideal case provides an error ≈1.5% resulting
in an error of ±0.004 in the W (x, p) shown in the main text.
This figure also shows that the value of kc ≈ 3.7 is indeed the
optimum one.

To obtain the accuracy of measuring the photon number,
we have followed the aforementioned procedure for each
light state shown in the main text, using the density ma-
trices ρnm in Fock space (n, m). The mean photon number
was obtained by the diagonal elements ρnn of the ρnm and
the relation 〈n〉 = ∑

nρnn. The results shown in Fig. 11(b)
have been obtained by calculating the mean photon number
value (〈nrec〉) of a coherent state numerically constructed using
the number of data points recorded in the experiment. This
value has been compared with the value resulting from the
ideal theoretical case (〈nth〉), i.e., we obtain [〈n〉 Error (%)
= |〈nrec〉 − 〈nth〉|/〈nth〉]. This procedure has been repeated for
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FIG. 11. Error analysis of the reconstructed Wigner function and the photon number. (a) Dependence of the error of the Winger function
reconstructed by the experimental data on kc. (b) Dependence of accuracy of measuring the photon number on the mean photon number of the
light state. In both graphs, the red solid line is a 15-points running average of the data (gray points).

different photon number values of the coherent state. It is
found that the accuracy of measuring the photon number is
in the range of ≈1.5% to ≈3.5% of the mean, for high and
low photon numbers, respectively.

APPENDIX I: AB INITIO ANALYSIS OF THE
DECOHERENCE DUE TO THE INTERACTION

WITH AN ENVIRONMENT

Here, we further extend our calculations to the interaction
of the obtained HHG Schrödinger optical cat states with an
environment. In particular, the model we consider is that of a
beam splitter, where in one of the input modes we introduce
the quantum state we want to study, and on the other an ancil-
lary vacuum state that is traced out at the output. Thus, we can
understand this ancillary mode as the part of the field that is
absorbed by the environment. Although simple, this model has
been proven to be exact when describing interactions with a
Gaussian reservoir [68], and we show here that it describes the
differences obtained between the theoretical and experimental
Wigner functions.

According to this model, the state after the interaction with
the environment is described by

ρ̃ = tranc(B(θ )|�post〉〈�post| ⊗ |0anc〉〈0anc|B(θ )†), (I1)

where tranc represents the partial trace over the ancillary mode,
and B(θ ) ≡ exp[θ (ââ†

anc − â†âanc)] is a unitary operator de-
scribing the beam splitter, where âanc (â†

anc) is the annihilation
(creation) operator acting over the ancillary modes, θ is a
parameter related to the transmission efficiency η by η =
cos(θ )2, and |�post〉 is the HHG optical cat state given in
Eq. (D2).

We find for the noise-affected state

ρ̃ = 1

N
[|(α + δα) cos(θ )〉〈(α + δα) cos(θ )|

+ |ξ ||α cos(θ )〉〈α cos(θ )|
− ξ ξ̃ |α cos(θ )〉〈(α + δα) cos(θ )|
− ξ ∗ξ̃ ∗|(α + δα) cos(θ )〉〈(α cos(θ )|, (I2)

where ξ = 〈α|α + δα〉, ξ̃ = 〈α sin(θ )|(α + δα) sin(θ )〉, and
N is the normalization factor. Using the definition for the
Wigner function provided in [77], we find

W (β ) = 2

πN

[
e−2|β−(α+δα) cos(θ )| + |ξ |e−2|β−α cos(θ )|

− (ξ ξ̃e−i2 Im(β )δα cos(θ ) + ξ ∗ξ̃ ∗ei2 Im(β )δα cos(θ ) )

× e− 1
2 |2β−(2α+δα) cos(θ )]

, (I3)

whose main features are shown in Fig. 12. In these plots, we
considered δα = −0.8i and decreasing values, from (a) to (d),
of the transmission efficiency. As we can see, the Wigner dis-
tributions keep their shape while the negative regions become
smaller. Evidently, in the case of zero transmissivity, we get

FIG. 12. Wigner functions of the cat state after considering its
interaction with the environment. Here, we consider δα = −0.8i and
transmission efficiencies (a) η = 1.0, (b) η = 0.75, (c) η = 0.59, and
(d) η = 0.39. The different axes characterize the different quadra-
tures of the field, in particular Re[β − α] ≡ xL, Im[β − α] ≡ pL ,
with xL, pL the values of the quadrature field operators x̂L = (â +
â†)/

√
2 and p̂L = (â − â†)/i

√
2.
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a Gaussian distribution that is centered in the origin. These
features describe very well the experimental observations,
where the negative regions become very small compared to

the theoretical values. However, in the experiment we also
have the noise contributions coming from the measurement
devices, which are not captured by this simple model.
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