
PHYSICAL REVIEW A 109, 033706 (2024)
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We present a comprehensive theoretical investigation of high-order harmonic generation in H2
+ molecules

within a quantum-optical framework. Our study focuses on characterizing various quantum-optical and quantum-
information measures stemming from the correlations established between light and matter. We demonstrate the
emergence of entanglement between electron and light states after the laser-matter interaction. We also identify
the possibility of obtaining nonclassical states of light in targeted frequency modes by conditioning on specific
electronic quantum states, which turn out to be crucial in the generation of highly nonclassical entangled states
between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser-field-driven
interactions in molecular systems under a fully quantum-mechanical framework.
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I. INTRODUCTION

High-order harmonic generation (HHG) arises from the
highly nonlinear interaction between an intense short laser
pulse and a target, which can be a gaseous system composed
of either atoms or molecules, as well as solid-state systems
and nanostructures [1–7]. Currently, HHG serves as one of
the main methods for generating spatially and temporally
coherent extreme-ultraviolet (XUV) light, as well as subfem-
tosecond and attosecond pulses [8]. Coherent light sources
spanning the ultraviolet to XUV spectral range find wide
applications in various fields, including fundamental research,
material science, biology, and lithography [3].

The fundamental physics underlying the HHG process is
commonly described by the three-step model or simple man’s
model [9–11]. According to this model, when an atom or
molecule interacts with a strong laser pulse, an electron is
liberated through tunnel ionization, typically during the peak
of the laser’s electric field within an optical cycle. The freed
electron is then driven away from the ionic core accelerated
by the laser field, following an oscillating trajectory. Along
this trajectory, the electron gains kinetic energy, which is
subsequently released as high-energy radiation during the re-
combination process. Due to the periodic nature of the laser
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field, this three-step process repeats every half cycle. The
HHG process in atomic systems has been extensively studied
and various theoretical models such as the strong-field ap-
proximation (SFA) [7,12–14] have been developed to describe
it, complementing the computationally expensive solution of
the time-dependent Schrödinger equation. Molecular systems
consiting of two atoms have been largely studied either by
using fully numerical methods [15–24] or by SFA exten-
sions to the molecule scenario [25–33]. These approaches
have contributed to our understanding of HHG in molecular
systems and provided valuable insights into their complex
dynamics.

The interest in HHG processes in molecular targets, com-
pared to their atomic counterpart, stems from the additional
degrees of freedom they provide. For instance, molecular
HHG involves the alignment of the molecular axis in relation
to the polarization of the laser field, as well as the inherent
multicenter nature of the strong-field process. On top of this,
molecular HHG encodes valuable information about the elec-
tronic orbital structure, offering a reliable means of extracting
molecular intrinsic parameters with subangstrom spatial and
attosecond temporal resolutions [28,34–37]. In this regard, it
has been shown that the unique properties of molecular HHG
spectra can be harnessed to extract structural information from
simple molecules [38], while HHG spectroscopy has also
shown potential for extracting structural and dynamical infor-
mation from more complex targets [39–41]. Finally, studies
of small molecules have successfully recovered the temporal
evolution of electronic wave functions directly [42–44].
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Most of the methods developed to study the HHG
processes in molecular systems consider a semiclassical
approach, treating the target quantum mechanically while
considering the electromagnetic field a classical quantity.
However, in recent years, there has been a growing inter-
est in the quantum-optical characterization of strong-field
processes, revealing intriguing features such as the genera-
tion of nonclassical states of light [45–51] with intensities
high enough to drive nonlinear processes in matter [52], hy-
brid entangled states between light and matter [47], highly
frequency-entangled states of light [53–55], and the influ-
ence of the photon statistics of the input driving field on
the HHG spectrum and the associated electronic trajectories
[56,57], as well as novel insights into the role of the optical
phase and quantum coherence in the HHG process [58] and
the limitations of semiclassical theories in this regard [59].
These significant research efforts have underscored the poten-
tial of strong-field physics in atoms towards photonic-based
quantum-information-science applications [60–64]. More-
over, recent theoretical works have demonstrated that similar
phenomena can be observed in solid-state materials as well
[65,66]. Specifically, in Ref. [66] the delocalized nature of
the recombination process in solid-state targets was shown
to impact the final state of the field, potentially resulting in
the generation of nonclassical states of light and electron-light
entangled states.

In this study we investigate the extent to which these effects
can be observed when utilizing symmetric diatomic molecules
as targets of intense laser fields, where the active electron is
now delocalized between the two centers. This scenario offers
a simpler setup compared to the solid-state system, where the
electron can recombine, to some extent [67], anywhere in the
solid. Nevertheless, as we show in the remainder of this work,
HHG in symmetric diatomic molecules such as H2

+ leads
to interesting nonclassical characteristics of the electromag-
netic field modes that depend, in certain cases, on the final
state of the electron. With this aim, we first characterize the
interaction between the molecular system and the quantized
field. Subsequently, we demonstrate how the final state of
the electron influences the generation of nonclassical states
of light and the entanglement features in the postinteraction
state. These effects strongly rely on molecular features, such
as the distance between the atomic centers and the number of
molecules interacting with the field.

The paper is organized as follows. After this general in-
troduction, we discuss the theoretical background in Sec. II,
where we present a simplified discrete mode description of
the quantized electromagnetic field and the relevant molec-
ular states. Section III summarizes the main results of the
paper: the mean photon number in the single- and many-
molecule regimes, Wigner function distributions of different
field modes, electron-light entanglement, and entanglement
between different sets of frequency modes. We summarize
in Sec. IV. Appendixes A–C provide more technical expla-
nations.

II. THEORETICAL BACKGROUND

In this work we consider the case where a diatomic
molecule interacts with a strong-laser field with a peak inten-

sity on the order of 1014 W/cm2, whose wavelength belongs
to the near-infrared regime (λL ∼ 750–1400 nm), much larger
than typical diatomic molecular sizes, which are on the order
of 1 Å. Furthermore, given that the typical vibrational dynam-
ics caused by the repulsion between the two centers is on the
order of 10 fs [68], which is larger than the subfemtosecond
scale at which HHG processes take place, we employ the
Born-Oppenheimer approximation [69,70] and consider the
nuclei to remain fixed in space. Consequently, the Hamil-
tonian characterizing the interaction, under the single-active
electron, Born-Oppenheimer, and dipole approximations, is

Ĥ (t ) = Ĥmol + Ĥint(t ) + Ĥfield, (1)

where Ĥmol = h̄2P̂
2
/(2m) + V (R̂) is the molec-

ular Hamiltonian, with m the electron’s mass,
P̂ the electronic momentum operator, and
V (R̂) the molecular potential; Hint(t ) = eR̂ · Ê(t )
is the interaction Hamiltonian in the length gauge, with
e the electron’s charge; and Ĥfield is the electromagnetic
free-field Hamiltonian. Here we aim to describe interactions
with laser pulses of finite duration, which ultimately
requires the introduction of the full continuum spectrum
of the electromagnetic field. However, for the sake of
simplicity, we consider a discrete set of modes spanning
from the central frequency of the driving laser ωL up to
the cutoff region of the harmonic spectrum ωqc = qcωL,
i.e., {ωq = qωL : q = 1, 2, . . . , qc}. Thus, we write the
free-field Hamiltonian for linearly polarized fields as
Ĥfield = ∑

q h̄ωqâ†
qâq, with âq (â†

q) the annihilation (creation)
operator acting on the field mode with frequency ωq. In order
to account for the pulse envelope of our driving field, we
model the laser electric-field operator as

Ê(t ) = −i f (t )
∑

q

g(ωq)(â†
qeiωqt − âqe−iωqt ), (2)

where g(ωq) ≡ εμ

√
h̄ωq/2ε0V is a factor arising from the

expansion of the electric-field operator into the field modes
[71,72], with εμ a unitary vector pointing in the direction
along which the field is polarized, ε0 the vacuum permittiv-
ity, and V the quantization volume. Here 0 � f (t ) � 1 is a
dimensionless function describing the laser pulse envelope.

Within this framework, we describe the initial state of the
electromagnetic field as (|α〉⊗qc

q=2 |0q〉), i.e., the fundamental
IR mode is in a coherent state of amplitude α, while the
harmonic modes are unpopulated, i.e., they are in a vacuum
state. On the other hand, we set the molecule to initially be
in its ground state. Here we consider the case of the H2

+
molecules. Its ground state, under the linear combination of
atomic orbitals (LCAO) [70,73], is given by the so-called
bonding state |ψb〉 ∝ |gR〉 + |gL〉, pictorially represented in
Fig. 1(b) by the red curve. This state is given as the symmet-
ric superposition of the ground-state orbitals of each of the
centers composing the molecule, namely, right (|gR〉) and left
(|gL〉) centers, represented in Fig. 1(a) by the dashed curves.
Alternatively, in terms of the LCAO, the first excited state of
the molecule corresponds to the antisymmetric superposition
of these ground-state orbitals, that is, |ψa〉 ∝ |gR〉 − |gL〉, rep-
resented by the blue solid curve in Fig. 1(b), which we do
take into account in our calculations. With all this, we write
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FIG. 1. Schematic representation of a diatomic molecule. The
two centers (H in the figure) are located at a distance R from
each other. (a) Solid curves represent the spatial distribution of the
atomic ground states {|gL〉, |gR〉}, while the dashed curves show the
spatial distribution of the slightly more localized states {|L̄〉, |R̄〉}.
These states satisfy orthonormality conditions and are given as linear
combinations of atomic ground state orbitals. (b) Solid curves show
the spatial distribution of bonding (red curve) and antibonding (blue
curve) states, computed under the LCAO.

the joint initial state as

|�(t0)〉 = |ψb〉 ⊗
(

|α〉
qc⊗

q=2

|0q〉
)

. (3)

Within a more convenient frame, under which the Hamilto-
nian is given by

Ĥ (t ) = Ĥmol + eR̂ · [Ê(t ) + Ecl(t )], (4)

with Ecl(t ) = (〈α|⊗qc
q=2〈0q|)Ê(t )(|α〉⊗qc

q=2 |0q〉), the initial
state of the system can be rewritten as

|�̄(t0)〉 = |ψb〉
⊗

q

|0q〉 (5)

and the time-dependent Schrödinger equation reads

ih̄
∂|�̄(t )〉

∂t
= {Ĥmol + eR̂ · [Ê(t ) + Ecl(t )]}|�̄(t )〉. (6)

In order to solve this differential equation, we move to the
interaction picture with respect to the semiclassical Hamilto-
nian Ĥsc(t ) = Ĥmol + eR̂ · Ecl(t ) such that the position oper-
ator acquires a time dependence, i.e., R̂(t ) ≡ Û †

sc(t )R̂Ûsc(t ),
with Ûsc(t ) = T̂ exp[− i

h̄

∫ t
t0

dτ Ĥsc(τ )], where T̂ is the time-
ordering operator. Similarly to Refs. [45,48,54,74], where a
quantum-optical characterization of atomic HHG processes
was done, we neglect the continuum population at all times
as we assume its contribution to be small in comparison to
that of the lowest-energy molecular states [13,30,32]. How-
ever, it is important to note that continuum states are indeed
considered in calculations involving the original electronic
frame of reference. Therefore, by projecting the Schrödinger
equation obtained under this assumption with respect to the
|ψb〉 and |ψa〉 states and introducing the aforementioned

approximations, we get the system of coupled differential
equations (see Appendix A 1 for a detailed derivation)

ih̄
d|
b(t )〉

dt
= e〈ψb|R̂(t )|ψb〉 · Ê(t )|
b(t )〉

+ e〈ψb|R̂(t )|ψa〉 · Ê(t )|
a(t )〉, (7)

ih̄
d|
a(t )〉

dt
= e〈ψa|R̂(t )|ψb〉 · Ê(t )|
b(t )〉

+ e〈ψa|R̂(t )|ψa〉 · Ê(t )|
a(t )〉, (8)

where |
i(t )〉 ≡ 〈ψi|�̃(t )〉, with |�̃(t )〉 = Ûsc(t )|�̄(t )〉, is the
quantum-optical state when the electron is found in state
|ψi〉. Thus, in this expression, we have two different contri-
butions: one given by μii(t ) ≡ e〈ψi|R̂(t )|ψi〉, i.e., the average
time-dependent dipole moment with respect to state |ψi〉,
and a second one given by μij(t ) ≡ e〈ψi|R̂(t )|ψj〉, with i �= j,
which couples both differential equations. It is worth not-
ing that the computation of the matrix elements μij(t ) was
performed under the adapted version of the SFA presented
in Refs. [29,30,32], which indeed takes into account the
role of continuum states. Consequently, the approximation of
considering only the first two bound states is made in the
interaction picture with respect to Ĥsc(t ) (refer to Appendix B
for specifics about the numerical analysis).

While in our analysis we effectively consider only the first
two bound states within the formalism of a single-molecule
analysis, the presence of higher bound states cannot be en-
tirely disregarded, as demonstrated in Ref. [75] in the context
of atomic HHG. However, our primary focus is to approxi-
mately describe the collective excitation of Nmol molecules,
whose response is dominated by the ground state due to fa-
vorable phase matching [76]. In this context, the inclusion of
the first excited states becomes necessary for the case of H2

+
molecules. Specifically, this is crucial for capturing interfer-
ence effects observed in typical HHG spectra resulting from
recombination events involving the same or opposite atomic
centers [30,77], which ultimately necessitate the consideration
of both bonding and antibonding states.

A solution to the system of differential equations presented
in Eqs. (7) and (8), with the initial conditions included, can be
written as (see Appendix A 2)

|
b(t )〉 = D̂(χb(t, t0))|0̄〉− 1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2D̂(χb(t, t1))M̂ba(t1)

× D̂(χa(t, t1))M̂ab(t2)|
b(t2)〉 (9)

for the bonding quantum-optical component, i.e., when the
electron is found in a bonding state, while for the antibonding
term we get

|
a(t )〉 = − i

h̄

∫ t

t0

dt1D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t0))|0̄〉

− 1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2D̂(χa(t, t1))M̂ab(t1)

× D̂(χb(t1, t2))M̂ba(t2)|
a(t2)〉. (10)

In Eqs. (9) and (10) we have that |0̄〉 ≡ ⊗
q,μ |0q,μ〉,

M̂ij(t ) = eμij(t ) · Ê(t ), and D̂(χi) ≡ eiϕi(t ) ∏
q D̂(χ (q)

i ), with
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D̂(χ (q) ) = exp[χ (q)â†
q − (χ (q) )∗âq] the displacement operator

with respect to the qth field mode [71,72], ϕi(t ) a phase factor
(see Appendix A 2 for details), and where

χ
(q)
i (t, t0) = −1

h̄

∫ t

t0

dτ eiωqτμii(t ) · g(ωq), (11)

that is, the Fourier transform of the averaged time-dependent
dipole moment with respect to the electronic state |ψi〉.

Let us carefully analyze the processes described by these
equations. In Eq. (9) we have that the first term depicts a
process where the only bound state the electron populates is
the bonding state. As a consequence of the HHG dynamics,
which is identical to that happening in atomic HHG processes,
each harmonic mode of the electromagnetic field gets shifted
a quantity χ

(q)
b (t, t0) [45,48,74]. The second term presents

a process where at time t2 the electron transitions from a
bonding to an antibonding state, the interaction described by
the M̂ab(t ) operator. Between the time intervals t2 and t1,
with t1 � t2, the field modes get displaced by χ

(q)
a (t1, t2), as

a consequence of the interaction of the electron with the field
modes when it is located in the antibonding state. Finally, at
time t1 the electron returns to the bonding state, where it stays
until the end of the pulse with the field modes getting dis-
placed by a quantity χ

(q)
b (t, t1). Similar dynamics is obtained

for the antibonding state, with the main difference that the
first term of Eq. (9) is missing. This is a consequence of our
initial conditions (3), since we impose the electron to be at
t0 in a bonding state. Thus, the only way to find the electron
in an antibonding state is by means of a transition from the
bonding component. Apart from this difference, the analysis
of Eq. (10) is analogous to the one we have just presented.

The solutions shown in Eqs. (9) and (10) define a recur-
sive relation for the bonding and antibonding quantum-optical
components. Each recursive iteration leads to an extra inter-
action between these two states. In the following, we truncate
our equations up to first order with respect to the interaction
processes: We allow the electron to perform at most a single
transition from the bonding or antibonding states. Note that
this is valid under the regime |μbb(t )| > |μba(t )| [|μaa(t )| >

|μba(t )|], i.e., when the probability of performing a transition
from a bonding to an antibonding (or vice versa) state is lower
than the probability of staying in a bonding (antibonding)
state. For the HHG processes, this is typically the situation,
since the electron eventually ionizes from and recombines to
the ground state. However, one could potentially alter this
situation in molecular systems by using nonsymmetric targets
[78], i.e., diatomic molecules where the atoms in each center
belong to different species, and/or by adding a perturbative
ultraviolet field with a relative phase with respect to that of
the intense infrared radiation [79]. After this truncation, we
rewrite Eqs. (9) and (10) as

|
b(t )〉 ≈ D̂(χb(t, t0))
⊗
q,μ

|0q,μ〉, (12)

|
a(t )〉 ≈ − i

h̄

∫ t

t0

dt1D̂(χa(t, t1))D̂(χb(t1, t0))

× μab(t1) · [
Ê(t1) + E (b)

cl (t1)
] ⊗

q,μ

|0q,μ〉, (13)

where in Eq. (13) we have that E (b)
cl (t ) ≡ 〈χb(t )|Ê(t )|χb(t )〉

(see Appendix A 2 for a more detailed derivation).
With all this, we have that the final joint state for the elec-

tron and the electromagnetic field after HHG is approximately
given by

|�̃(t )〉 ≈ 1√
N

[|ψb〉|
b(t )〉 + |ψa〉|
a(t )〉], (14)

which in general has the form of an entangled state between
the electronic and quantum-optical degrees of freedom. Al-
ternatively, one could also provide an interpretation of this
state in terms of recombination events taking place in the
right or left atomic centers. Note that, according to Ref. [80],
a transfer mechanism where the electron ionizes at one cen-
ter and recombines in the other becomes efficient when the
electron is initially in a delocalized state. This is the case
of the ground (bonding) state of H2

+ (see Fig. 1). Here we
introduce the set of localized states {|R̄〉, |L̄〉}, given by |R̄〉 =
(1/

√
2)(|ψb〉 + |ψa〉) and |L̄〉 = (1/

√
2)(|ψb〉 − |ψa〉), which

unlike the set {|gR〉, |gL〉} define an orthonormal set that is
slightly more localized in the right and left centers compared
to that of the atomic orbitals [blue and red solid curves in
Fig. 1(a)]. In the limit when the distance between the two
centers becomes infinitely large, both sets converge.

Under this localized right and left set, we can rewrite the
state in Eq. (14) as

|�̃(t )〉 = 1√
2N

{|R̄〉[|
b(t )〉 + |
a(t )〉]

+ |L̄〉[|
b(t )〉 − |
a(t )〉]}

= 1√
2N

[|R̄〉|
R̄(t )〉 + |L̄〉|
L̄(t )〉], (15)

which presents the same amount of entanglement as Eq. (14)
since local unitary transformations leave the total amount of
entanglement invariant [81]. However, by performing mea-
surements that are able to distinguish between the localized
right and left components P̂R̄ = |R̄〉〈R̄| and P̂L̄ = |L̄〉〈L̄| or to
distinguish between different energetic states P̂b = |ψb〉〈ψb|
and P̂a = |ψa〉〈ψa|, the final quantum-optical state gets mod-
ified, as will be studied in the remnant of this work.

III. RESULTS

In this section we study different quantum-optical and
quantum-information quantities of the states presented in
Eqs. (14) and (15). For the numerical analysis, we consider
that a H2

+ molecule is driven by a sin2-envelope pulse linearly
polarized along the molecular axis, with central wavelength
λL = 800 nm, peak intensity I = 5 × 1014 W/cm2, and a total
duration of 
t ≈ 21 fs (eight optical cycles).

A. Mean photon number and the many-molecule regime

Here we look at the mean photon number of the differ-
ent harmonic modes obtained from Eq. (14) [or equivalently
Eq. (15)], which, to some extent, should resemble the har-
monic spectra measured after HHG processes. This will allow
us to benchmark the predictions of our theory against those
obtained with semiclassical approaches [30,32]. Ultimately,
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FIG. 2. Mean photon number distribution for the different harmonic modes when considering single-molecule dynamics. The calculations
have been done for bond lengths (a) R = 2.0 a.u. and (b) R = 3.5 a.u., with the blue and orange curves corresponding to the bonding and
antibonding components, respectively. (c) Mean photon number for odd-harmonic orders, where each curve corresponds to a different bond
length. For these calculations, we have considered a H2

+ molecule excited with a sinusoidal squared laser pulse of peak intensity I = 5 ×
1014 W/cm2, central wavelength λL = 800 nm, and 
t ∼ 21 fs of duration (eight optical cycles).

this comparison will be used to discuss a phenomenological
many-molecule extension to the single-molecule calculations
we have done thus far, although a more elaborate derivation
of this is presented in Appendix A 3.

Assuming that we have no knowledge about what state the
electron has recombined with, the quantum-optical state reads

ρ̂ f (t ) = trelec[|�̃(t )〉〈�̃(t )|]

= 1

N [|
b(t )〉〈
b(t )| + |
a(t )〉〈
a(t )|], (16)

where we have performed the partial trace with respect to
the electronic degrees of freedom. The mean photon number
present in the qth harmonic mode is then given by

〈â†
qâq〉 = 1

N (〈â†
qâq〉b

+ 〈â†
qâq〉a

), (17)

where we have defined 〈â†
qâq〉i

≡ 〈
i(tend)|â†
qâq|
i(tend)〉,

with tend denoting the end of the pulse.
In Fig. 2 we show the results of this calculation when

considering a single molecule interacting with the field.
Specifically, in Figs. 2(a) and 2(b) we show separately the con-
tributions of 〈â†

qâq〉b (orange curve with circles) and 〈â†
qâq〉a

(blue curve with squares) for two different bond lengths. In
both cases, we recover some of the characteristic features of
the H2

+ HHG spectra [32,82], namely, two plateau regions,
a low-frequency one happening between the 1st and the 13th
harmonic and a second for higher frequencies that lasts until
the cutoff frequency, located around the 80th harmonic. While
in the second plateau region the presence of even and odd har-
monics cannot be clearly distinguished, a typical feature due
to the interference between different electronic trajectories
at recombination [83,84], for the first plateau region we can
discern between two contributions: The term 〈â†

qâq〉b clearly
contributes to odd-harmonic orders, while 〈â†

qâq〉a contributes
to even-harmonic orders. Before the HHG takes place, the
electron is initially in a bonding state which, after recom-
bination, ends up in an antibonding state that has opposite

parity. This inversion of symmetry in the final electronic state
is reflected in the mean photon number distribution in the
presence of even-harmonic orders [78,79].

One of the most surprising aspects about Figs. 2(a) and 2(b)
is the relative contributions of 〈â†

qâq〉b
and 〈â†

qâq〉a
, as they

show the same order of magnitude. This is because we find
that the probability of generating a photon, within the single-
molecule scenario, is almost equal for the bonding-bonding
and bonding-antibonding channels, ranging from 10−10 to
10−16 from the lowest to the highest harmonic orders in
Fig. 2(a). On the other hand, when looking at the electronic
population for both energetic states, we find that the probabil-
ity of finding an electron in a bonding state is dominant, as
in most cases the electron barely interacts with the field. We
now provide an extension of our equations to the case where
we have a system composed of Nmol uncorrelated molecules
interacting with the field [85]. In order to do this, we take
into account that in the many-molecule scenario, there are two
different contributions to the measured HHG signal [76]: a
coherent contribution that scales as N2

mol coming from events
where the electron recombines with the state from which it has
ionized and an incoherent contribution that scales as Nmol from
electrons that recombine with other bound states. Thus, one
could phenomenologically take this into account by redefin-
ing the time-dependent dipole moments (for a more detailed
derivation see Appendix A 3). Specifically, we define the Nmol

time-dependent dipole moments as μ
(Nmol )
bb (t ) ≡ Nmolμbb(t )

and μ
(Nmol )
ij (t ) ≡ √

Nmolμij(t ) when i �= j. By doing this, we
get the mean photon number distribution shown in Fig. 3,
where we observe that the final mean photon number shows
clear odd-harmonic orders along the first plateau region. In
this case, one can check that 〈â†

qâq〉b scales with N2
mol while

〈â†
qâq〉a scales with Nmol. It is important to note that this

scaling is obtained under the consideration that only one of the
Nmol molecules ends up at the final time t in the antibonding
state (see Appendix A 3 for details).

To conclude this section, let us discuss how increasing the
bond length affects the final mean photon number distribution

033706-5



J. RIVERA-DEAN et al. PHYSICAL REVIEW A 109, 033706 (2024)

FIG. 3. Mean photon number distribution for the different har-
monic modes when considering Nmol molecules [85]. Specifically,
we set in both plots Nmol = 108, while (a) R = 2.0 a.u. and (b) R =
3.5 a.u. We observe that recombination events ending up in a bonding
state (blue curve with circles) provide a higher contribution to the
mean photon number compared to those happening with an antibond-
ing state (orange curve with squares). Specifically, the former scales
with N2 and the latter with N .

of the harmonic modes. In Fig. 2(c) we show the total mean
photon number [Eq. (17)] for the odd-harmonic orders in the
first harmonic plateau when considering three different bond
lengths. We observe that for larger distances, the peak of the
harmonic spectrum for q > 1 becomes smaller. This is better
understood by considering a description of the HHG process
in terms of recombinations with right and left centers. In
this picture, the larger the distance between the two centers,
the lower the probability of ionization-recombination events
taking place between different centers. Consequently, a lower
efficiency of the HHG conversion is expected. However, it is
important to note that the characteristics of the HHG spectrum
can be modified when considering different molecular-field
orientations as the bond length varies [86].

B. Wigner function distribution

One of the most complete ways of characterizing a
quantum-optical state is the Wigner function, as it encodes in
phase space all the information about it [87,88]. Specifically,
it has been widely used in the field of quantum optics as a
witness of nonclassical features, which are typically related to
the presence of negative regions in the observed distribution
and/or non-Gaussian behaviors [89,90]. Following Ref. [91],
the Wigner function for the qth harmonic mode is proportional
to the mean value of the operator Ŵq(β ) = D̂q(β )�̂qD̂†

q(β ),
with �̂q the parity operator acting on mode q.

In this section we study the Wigner distribution of the
quantum-optical state after the HHG interaction under differ-
ent circumstances. First, we consider the case of Eq. (16),
where we have no knowledge about the final state of the
electron. In this case, the Wigner function can be written as

W (q)
T = 1

π
tr[ρ f (t )Ŵq(β )]

= 1

N
[
W (q)

b (β ) + NaW (q)
a (β )

]
, (18)

FIG. 4. Maximum value of Wigner function of the state pre-
sented in Eq. (16) in phase space as a function of (a) the harmonic
modes q when considering different bond lengths and (b) the bond
length when considering different harmonic orders. In these plots, we
have set Nmol = 109. Although not shown here, it was observed that
the obtained Wigner functions presented a Gaussian-like behavior.

where we defined W (q)
i (β ) = π−1〈
i(t )|Ŵq(β )|
i(t )〉/Ni,

with Ni the normalization constant of |
i(t )〉. Under the
regimes we have studied, i.e., with the excitation conditions
specified at the beginning of this section and for Nmol �
109, Eq. (18) presents in all cases a Gaussian-like behavior.
However, some differences are observed with the standard
Wigner function observed for coherent states. By definition,
the Wigner function of a coherent state |α〉 is a Gaussian
with maximum value equal to π−1. However, because of the
influence of the antibonding component in Eq. (18) which
depends on the number of molecules Nmol, we observe that
the maximum value of these Wigner functions gets reduced,
as is shown in Fig. 4. Specifically, in Fig. 4(a) we show this
maximum value as a function of even-harmonic orders. We
specifically choose these values because, as shown in Figs. 2
and 3, these are the harmonic orders to which the antibonding
quantum-optical component contributes the most. Therefore,
the higher the contribution of the corresponding quantum-
optical component to the state, the more affected we expect
the maximum of the obtained Wigner distribution to be. On
the other hand, the bond length also plays a fundamental role,
as observed in Fig. 4(b). Here we see that the maximum of the
Wigner function tends to π−1 as R increases. Specifically, the
bigger R is, the less likely it is to have ionization and recom-
bination events between different centers. This translates into
a lower occupation of the antibonding state and hence into a
smaller variation of the Wigner function maxima.

The presence of nonclassical states of light was observed
in Refs. [45,48,53,54,74] in atomic systems and recently
in [65,66] in solid-state systems upon the performance of
quantum operations restricted to instances where high-order
harmonic radiation is generated. From an experimental per-
spective, this requires the performance of a(n) (anti)correlated
measurement between the generated harmonics and part of
the fundamental mode [92]. Here, instead of performing this
kind of conditioning operations, we constrain our state to
those instances where the electron ends up in an antibonding
state after HHG. Mathematically, this corresponds to the case
where we apply the projector P̂a = |ψa〉〈ψa| onto Eq. (14)
such that the resulting quantum-optical state is |
a(t )〉. In a
basis similar to what has been found in the aforementioned
references, one could expect to observe nonclassical features
in this case as well.
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FIG. 5. Wigner function of the quantum-optical state when conditioning the electron to be found in an antibonding state, i.e., Wa(β ) in
Eq. (18), with β = β̃ − α − χa(t ), for different bond lengths (a)–(d) R = 2.0 a.u., (e)–(h) R = 2.5 a.u., and (i)–(l) R = 3.5 a.u. and different
harmonic modes (a), (e), and (i) q = 2, (b), (f), and (j) q = 4, (c), (g), and (k) q = 6, and (d), (h), and (l) q = 8. (m) Dependence of the mean
photon number, computed with the antibonding component (once normalized to unity), on the harmonic modes for different bond lengths R.

In Figs. 5(a)–5(l) we show the Wigner function ob-
tained for different harmonic modes and for different bond
lengths. More specifically, we have R = 2.0 a.u. in Figs. 5(a)–
5(d), R = 2.5 a.u. in Figs. 5(e)–5(h), and R = 3.5 a.u. in
Figs. 5(i)–5(l). In most cases, we observe that the Wigner
functions of the different harmonic modes present a Gaussian-
like behavior, with a more or less flat maximum depending
on the harmonic mode. However, in some cases, the Wigner
function shows a distinctive ring-shaped distribution [see
Figs. 5(b), 5(f), 5(g), and 5(k)]. When comparing these results
with the corresponding mean photon number distribution,
shown in Fig. 5(m), we see that for the cases where the
ring-shaped distribution is observed, the mean photon number
reaches its maximum value. This is related to the fact that, for
these harmonic modes, the highest contribution to the state
ρ

(q)
a = trq′ �=q[|
a(t )〉〈
a(t )|] comes from (displaced) single-

photon states (see Appendix A 3). The bigger the contribution
of the single-photon state is, the more profound the obtained
central minimum is. Further note that in this analysis we have
omitted odd-harmonic orders, as the recombination events we
are looking at, for small harmonic orders, generate photons at
even-harmonic orders (see Figs. 2 and 3).

Finally, to conclude this section, we note that if the same
analysis is done when considering the recombination pro-
cess that ends in either the right or the left atomic center
(|R̄〉 or |L̄〉), we get results similar to those found in Fig. 4.
Here the resulting quantum-optical states are given as the su-
perposition of the bonding and antibonding quantum-optical
components, the former being dominant over the latter, lead-
ing to Gaussian-like Wigner functions.

C. Electron-light entanglement

As we have seen in the preceding section, the final state
of the electron plays a crucial role in determining the features
observed in the quantum-optical state. Thus, given the struc-

ture of the state shown in Eq. (14) [or equivalently Eq. (15)],
one could expect the electronic and field degrees of freedom
to be entangled. The use of this kind of hybrid entangled state
[93] has proven to be extremely useful for different quantum-
information-science tasks, such as quantum teleportation [94],
quantum communication [95], quantum steering [96], and
fault-tolerant quantum computing [97]. Therefore, given that
HHG processes could provide access to this kind of states
[47,66], here we study the light-matter entanglement between
the electronic and electromagnetic-field degrees of freedom.
Since we are dealing with pure states, we can characterize
the entanglement features of the obtained state by means
of the entropy of entanglement, i.e., S(σ̂ ) := −tr(σ̂ log2 σ̂ )
[81,98,99]. In this definition, σ̂ corresponds to the reduced
density matrix with respect to one of the subsystems. For
the sake of simplicity, in our calculations we perform the
partial trace with respect to the electromagnetic-field degrees
of freedom such that we use σ̂ ≡ ρ̂elec(t ) = tr f [|�̃(t )〉〈�̃(t )|]
(see Appendix C 1). It is worth noting that, for a general
two-qudit system, the entanglement entropy, as defined here,
satisfies 0 � S(σ̂ ) � ln(d )/ln(2), where d denotes the Hilbert
space dimension of the respective qudit systems, with the
upper bound obtained for maximally entangled states. How-
ever, in our case, we can restrict our analysis to qubits
since we effectively work with the first two bound states of
the molecular system, while the quantum-optical state can
be effectively spanned by a displaced qc-qubit basis within
the many-molecule regime we are operating in (refer to
Appendix C 2 for more details).

In Fig. 6 we present the obtained results. In Fig. 6(a) we ob-
serve that S(ρ̂elec(t )) increases exponentially with the number
of interacting molecules, with the rate being determined by the
distance R between the atomic centers. Specifically, the max-
imum amount of entanglement is found to be S(ρ̂elec(t )) ≈
0.75 for R = 2.0 a.u. and Nmol = 1.2 × 109. In Fig. 6(b)
we instead observe for fixed values of Nmol that S(ρ̂elec(t ))
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FIG. 6. Light-matter entanglement between the electronic de-
grees of freedom and all the harmonic modes. (a) Plot of the entropy
of entanglement as a function of the number of molecules, when
considering different bond lengths R. (b) Plot of S(ρ̂elec(t )) as a
function of the bond length for a fixed number of molecules.

decreases for increasing bond lengths. This is a consequence
of the fact that, for small values of R, it is more likely to
find processes where an electron ionizes from one center
and recombines at the other, which ultimately enhances the
probability of ending up in an antibonding state. We note that,
in this treatment, the entanglement occurs between the field
and the molecular ions and not between the molecules them-
selves. Furthermore, the values of Nmol we use here match the
estimates found in experiments with atomic gases [45], once
including the proper correction factors [85], which suggests
that these effects could be potentially observed experimen-
tally.

D. Entanglement between harmonic modes

High-order harmonic generation processes allow for the
generation of light with frequencies spanning from the in-
frared to the extreme ultraviolet regime (see Figs. 2 and 3).
This unique feature, together with the so-called conditioning
on HHG approaches [45,54,74], allows for the generation
of massively frequency-entangled light states [48,53,54],
which could be of potential interest towards optical-based
quantum-information-science applications [63,64,100,101].
In this section we study the entanglement between two dis-
tinct sets of frequency modes in different scenarios. First,
we consider the case where the electron is found in a given
state and then divide the frequency modes into two sets A :=
{q : q � q̃} and B := {q : q > q̃} [see Fig. 7(a)] and study
the amount of entanglement between the two sets. Then we
consider the case where we have no knowledge about what
state the electron ends up in and characterize the entanglement
between one of the frequency modes and the rest. Note that,
in general, one could consider more general entanglement
characterizations involving more than two parties, which is
a topic of active research [102,103]. Here we restrict the
study to bipartite scenarios for which general entanglement
measures and witnesses are well known [99].

For the first case, we condition the electron state to be
found in an antibonding (|ψa〉), a left (|L̄〉), or a right (|R̄〉)

FIG. 7. Entanglement between the field modes when the electron
is conditioned to be in a specific quantum state. (a) Schematic of
the approach. We split the harmonic modes into two sets A := {q :
q � q̃} and B := {q : q > q̃} and study the entanglement between
them as a function of the subsystem size, which in the text we
refer to as ‖A‖. (b) Change of the entropy of entanglement S(ρ̂a(t ))
when the electron is conditioned to be found in an antibonding state,
when considering different bond lengths. (c) Entropy of entangle-
ment S(ρ̂R̄/L̄ (t )) in the limit of having a large number of molecules,
computed for the case where we condition the electron to be found
in the localized right (|R̄〉) or left (|L̄〉) states.

state. Thus, the quantum-optical state, once considering the
separation between partitions A and B, can be generally writ-
ten as

|
i〉 = aiD̂(χ̃)|0̃A〉|0̃B〉 + bi|1̃A〉|0̃B〉
+ ci|0̃A〉|1̃B〉 + di|0̃A〉|0̃B〉, (19)

with i = {a, R̄, L̄} such that the coefficients {ai, bi, ci, di} de-
pend on the state with respect to which we have projected the
electronic part (see Appendix C 2). Specifically, when consid-
ering the projection with respect to an antibonding state, we
get that aa = 0, and we can easily characterize the amount of
entanglement by looking at the entropy of entanglement. The
results for this case are shown in Fig. 7(b) as a function of
the size of subsystem A, defined hereupon as ‖A‖ = dim(A),
for different bond lengths. We observe that there is an op-
timal value of ‖A‖ for which the entanglement achieves a
maximum value. Specifically, we find that, for R = 2.0, 2.5,
and 3.5 a.u., we get max‖A‖[S(ρ̂a(t ))] ≈ 0.69, 0.99 and 0.78,
respectively. Thus, we see that by properly defining sets A
and B, one can generate highly frequency-entangled bipartite
states. We note that the values of ‖A‖ for which S(ρ̂a(t ))
becomes maximum corresponds to those definitions of A (or
equivalently B) for which q̃ is a harmonic mode with a max-
imum value of the mean-photon number [see Figs. 2(a) and
2(b)]. When increasing ‖A‖ beyond this value, the entropy of
entanglement gets reduced following the typical plateaulike
structure of usual HHG spectra: The probability of generat-
ing a photon in a mode belonging to subsystem B becomes
less likely when higher harmonic orders are included in this
set, which reduces the quantum correlations between both
subsystems. We also observe that for larger bond lengths R,
the amount of entanglement for ‖A‖ � 30 increases. This is
because the harmonic yield decreases for larger bond lengths,
which makes the difference in population between the low-
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and high-order harmonic regimes smaller. Nevertheless, we
emphasize that the probability of having recombination events
with an antibonding state becomes smaller as the bond length
becomes larger.

On the other hand, when conditioning the electron to be
found in either the right or the left center, the amount of
entanglement shows a behavior similar to the one we dis-
cussed [see Fig. 7(c)], although leading to smaller values
of entanglement. Specifically, the maximum values that we
find for R = 2.0, 2.5, and 3.5 a.u. are max‖A‖[S(ρ̂R̄,L̄(t ))] ≈
4.4 × 10−2, 1.8 × 10−3, and 1.11 × 10−4, respectively. Thus,
conditioning the electron to be found in either the localized
right or the localized left components hugely influences the
final amount of entanglement compared to the case where we
condition the electron to be found in an antibonding state.
We also note that, for increasing bond lengths, the amount
of entanglement decreases for all possible values of ‖A‖,
which is in stark contrast with what is observed in Fig. 7(b).
This is an expected feature, since the amount of entanglement
obtained when projecting onto the localized right and/or left
basis is strongly influenced by a drift of population from the
bonding and antibonding states. Thus, the more likely we are
to find this kind of transition, which in particular occurs for
small bond lengths, the more entangled subsystems A and B
will be.

Alternatively, we study the amount of entanglement be-
tween the qth harmonic and the rest, in the case where we
have no knowledge about the final state of the electron. Thus,
in this case we work with the quantum-optical state given by
Eq. (16), i.e., a mixed state for which entropy of entanglement
is not a valid entanglement measure [99]. Instead, we can
use entanglement witnesses such as the logarithmic negativity,
which witnesses the presence of nonpositive partial transpose
entangled states, which is defined as [104,105]

EN (ρ̂) := log2(2N + 1), (20)

where N is the negativity, that is, the sum of all negative
eigenvalues of the partial transpose of ρ̂ with respect to one
of the subsystems. Since we are dealing with displaced Fock
states, the calculation of Eq. (20) becomes computationally
demanding. In order to overcome this, we propose the lower
bound to the logarithmic negativity (see Appendix C 2)

EN (ρ̂ f (t )) � EN (ρ̂ f (t )) = log2

(
2
∣∣min

i
λ

TB̃
a,i

∣∣ + 1
)
, (21)

where {λTB̃
a,i} are the eigenvalues of ρ̂

TB̃
a (t ) ∝

(|
a(t )〉〈
a(t )|)TB̄ and TB̄ denotes the partial transpose
with respect to subsystem B̃, defined as B̄ := {q ∀ q �= q̃} (and
with Ā := {q̃}).

In Fig. 8(a) we show the results of this computation as
a function of the harmonic modes for two bond lengths.
In the low-order harmonic regime (q � 15), this entangle-
ment measure shows peaks for even-harmonic orders and
troughs for odd-harmonic orders. We note that the presence
of entanglement in this state is influenced by recombina-
tion events that end up in an antibonding state. For these
we have observed that, within the range q � 15, even or-
ders are the ones that get populated the most, and in some
cases they lead to nonclassical signatures in their Wigner
function distribution (see Fig. 5). Therefore, it is reasonable

FIG. 8. Entanglement between the field modes assuming that we
have no knowledge about the electronic state. Here we study the
amount of entanglement between a single mode q̃ and the rest. Thus,
instead of working with the sets A and B (see Fig. 7), we instead
have Ā := {q̃} and B̄ := {q ∀ q �= q̃}. (a) Amount of entanglement
between the qth mode and the rest, when considering different bond
lengths and Nmol = 108. As a measure of entanglement, we use a
lower bound on the logarithmic negativity E (q)

N (ρ̂(t )) (see the text
for more details). (b) Plot of maxq[E (q)

N (ρ̂(t ))] as a function of R for
different numbers of molecules.

that for these modes, EN (ρ̂ f (t )) becomes maximum (approx-
imately 0.2 for R = 2.0 a.u and approximately 9.29 × 10−3

for R = 3.5 a.u.). When increasing q beyond the 15th har-
monic, EN (ρ̂ f (t )) shows features similar to those of the
harmonic spectrum: a second plateau region which extends
until cutoff, after which the entanglement measure shows
an abrupt decrease. On the other hand, larger bond lengths
R lead to smaller values of EN (ρ̂ f (t )). This is better ob-
served in Fig. 8(b), where we show maxq[EN (ρ̂ f (t ))] as a
function of R.

IV. CONCLUSION AND OUTLOOK

In this study we have undertaken a theoretical investiga-
tion of the high-order harmonic generation process in H2

+
molecules within a quantum-optical framework. Our research
has focused on characterizing various quantum-optical and
quantum-information measures, demonstrating the emergence
of entanglement between the electron and light states. Fur-
thermore, we have identified that, by selectively examining
events where the electron ends up in specific quantum states,
it becomes possible to obtain nonclassical states of light in
targeted frequency modes. Additionally, we have shown the
generation of highly entangled states between distinct sets
of harmonic modes, accounting for the established degree of
entanglement under bipartite scenarios.

Our study was conducted under specific conditions, fo-
cusing on symmetric two-center molecules aligned along the
polarization axis of the incident laser field while assuming
their nuclei to remain fixed. We anticipate that the observed
features will exhibit strong dependences on (i) the polarization
and orientation of the laser field with respect to the molecular
axis, as well as the molecular alignment, as they crucially
affect the harmonic emission (see, for instance, [30,32] and
references therein); (ii) the population of different bound
states and electron localization, which are heavily influenced
by the molecular structure encompassing the atomic species
within each center and the bond lengths [78–80]; and (iii) the
internuclei motion which, provided the effects that varying
bond lengths have on the considered quantum-optical observ-
ables and quantum-information measures, we expect them to
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have to have non-negligible influence on the obtained results,
particularly for pulse durations exceeding the order of tenths
of femtoseconds.

Moreover, an intriguing avenue for future research could
involve the exploration of experimental methodologies ca-
pable of validating the presented theoretical results. Such
methods should possess the capability to probe nonclassical
features as well as to discern the electronic distribution within
the molecule for the corresponding conditioning measure-
ments. For the latter, pump-probe techniques measuring the
kinetic energy of the emitted molecular ions, such as was
done in Ref. [106] to characterize the electronic distribution
within H2

+ and d2
+ molecules, could serve as inspiration.

Regarding the examination of the considered quantum-optical
observables, in our context the Wigner function can be
realized through homodyne detection techniques [90], an ap-
proach already explored in the realm of atomic HHG in
Refs. [45,48,52,74]. In contrast, the analysis of quantum-
information measures may present additional challenges,
especially given that the entanglement measures considered
here often require some form of full state or partial to-
mography. Notably, for the electronic part, it was observed
in Ref. [107] that the obtained results become significantly
affected by experimental noises, rendering the analysis of
the entanglement entropy unreliable as the total state of the
system is inherently mixed. An alternative approach could
involve the use of entanglement witnesses [99], which can
be tailored depending on the set of measurements achievable
with a specific experimental setup.

As a possible outlook, it would be interesting to extend
the present theory to multicenter and large molecules such
as those employed in the semiclassical limit in the series of
papers [29–31] and the work by Suárez Rojas [32].
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APPENDIX A: ANALYSIS OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

In this Appendix we aim to give a more detailed derivation
of how we solved the Schrödinger equation and the approxi-
mations we have considered, in order to reach Eq. (14).

1. Presenting the equations

We start our discussion with Eq. (6) after moving
to the interaction picture with respect to the semiclassi-
cal Hamiltonian Hsc(t ) = Ĥmol + eR̂ · Ecl(t ). In this picture,
the position operator R̂ acquires a time dependence, i.e.,
R̂(t ) ≡ Û †

sc(t )R̂Ûsc(t ), with Ûsc(t ) = T̂ exp[− i
h̄

∫ t
t0

dτ Ĥsc(τ )],

where T̂ is the time-ordering operator. Thus, the resulting
Schrödinger equation reads

ih̄
∂|�̃(t )〉

∂t
= eR̂(t ) · Ê(t )|�̃(t )〉, (A1)
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where |�̃(t )〉 = Ûsc(t )|�̄(t )〉. We now introduce the identity
in the electronic subspace as

1 = |ψ0〉〈ψ0| + |ψ1〉〈ψ1| +
∑
n=2

|ψn〉〈ψn| +
∫

dψc|ψc〉〈ψc|,
(A2)

where the first two terms are the projectors with respect to the
ground and first excited state of the molecule, which we as-
sume are not degenerate; the third term contains the projector
that includes all other bound states and the last one all those
related to the continuum states. Inserting this expression in
Eq. (A1), we get

ih̄
∂|�̃(t )〉

∂t
= eR̂(t ) · Ê(t )

(
〈ψ0|�̃(t )〉|ψ0〉 + 〈ψ1|�̃(t )〉|ψ1〉

+
∑
n=2

〈ψn|�̃(t )〉|ψn〉 +
∫

dψc〈ψc|�̃(t )〉|ψc〉
)

.

(A3)

Similarly to what has been done for atomic HHG processes
[45,48,74], we neglect the electronic continuum population at
all times [48,54], as this contribution is typically considered to
be small in comparison to that of the lowest-energy molecular
states [13,30,32]. However, it is important to highlight that
the continuum states have indeed been taken into account to
compute the time-dependent dipole moment matrix elements,
as these are evaluated in the original electronic frame of
reference. Also, we consider a slightly different version of
the strong-field approximation (SFA) [13]. In the SFA, one
of the assumptions is that the only bound state contributing
to the dynamics is the ground state. On top of this, here we
also consider the contribution of the first excited state of the
molecule. This is because, for the case we are interested in,
i.e., H2

+ molecules, these two states are crucial for spanning a
set of localized states, which determines whether the electron
is closer to the atom on the right or the atom on the left of
the considered diatomic molecule (see Fig. 1 for a pictorial
representation). Thus, we approximate Eq. (A3) as

ih̄
∂|�̃(t )〉

∂t
≈ eR̂(t ) · Ê(t )[〈ψ0|�̃(t )〉|ψ0〉 + 〈ψ1|�̃(t )〉|ψ1〉],

(A4)
and projecting the whole equation with respect to both the
ground and the first excited state, we get the system of coupled
differential equations

ih̄
d|
0(t )〉

dt
= e〈ψ0|R̂(t )|ψ0〉 · Ê(t )|
0(t )〉

+ e〈ψ0|R̂(t )|ψ1〉 · Ê(t )|
1(t )〉, (A5)

ih̄
d|
1(t )〉

dt
= e〈ψ1|R̂(t )|ψ0〉 · Ê(t )|
0(t )〉

+ e〈ψ1|R̂(t )|ψ1〉 · Ê(t )|
1(t )〉, (A6)

where we have defined |
i(t )〉 ≡ 〈ψi|�̃(t )〉.

There are several methods for computing the ground and
first excited states of molecules. Currently, this is an active
field of research, especially for large molecules which show
a large degree of correlation. Here, since we want to have an
analysis where we can distinguish the localized contributions
of the molecule, we opt for the method using a linear combi-
nation of atomic orbitals (LCAO) [70,73]. According to this,
the ground-state molecular orbitals are expanded by linear
combinations of atomic orbitals. This method is particularly
useful when considering simple molecules for which a small
number of atomic orbitals provides a good description of the
ground and first excited states, as it happens with H2

+. In this
case, the ground and first excited are referred to as bonding
and antibonding states and, within the LCAO, are given by
|ψb〉 ∝ |gL〉 + |gR〉 and |ψa〉 ∝ |gL〉 − |gR〉, respectively, with
|gL〉 and |gR〉 the ground-state orbitals of the atoms on the
left (L) and right (R), respectively. Note that, as the number
of atoms participating in the molecules grows larger, more
atomic orbitals would be needed and the LCAO ceases to
provide a straightforward description. In terms of the bonding
and antibonding states, Eqs. (A5) and (A6) read

ih̄
d|
b(t )〉

dt
= e〈ψb|R̂(t )|ψb〉 · Ê(t )|
b(t )〉

+ e〈ψb|R̂(t )|ψa〉 · Ê(t )|
a(t )〉, (A7)

ih̄
d|
a(t )〉

dt
= e〈ψa|R̂(t )|ψb〉 · Ê(t )|
b(t )〉

+ e〈ψa|R̂(t )|ψa〉 · Ê(t )|
a(t )〉, (A8)

which are the equations we are going to focus on hereupon.

2. Solving the equations in the single-molecule scenario

The system of equations defined by Eqs. (A7) and (A8) is
a system of coupled differential equations. If we take a closer
look at these equations, we can see that both of them are
first-order inhomogeneous differential equations with well-
defined homogeneous and inhomogeneous parts. Thus, their
respective solutions can be written as the sum of a solution to
the homogeneous part plus a particular solution to the inho-
mogeneous equation. Then the solution to these equations can
be written as

|
b(t )〉 = D̂(χb(t, t0))|
b(t, t0)〉

− i

h̄

∫ t

t0

dt1D̂(χb(t, t1))M̂ba(t1)|
a(t1)〉, (A9)

|
a(t )〉 = D̂(χa(t, t0))|
a(t, t0)〉

− i

h̄

∫ t

t0

dt1D̂(χa(t, t1))M̂ab(t1)|
b(t1)〉, (A10)

where we have defined M̂ij = e〈ψi|R̂(t )|ψj〉 · Ê(t ) and
D̂(χi) ≡ eiϕi(t ) ∏

q D̂(χ (q)
i ), with D̂(χ (q) ) = exp[χ (q)â†

q −
(χ (q) )∗âq] the displacement operator acting on the qth
field mode [71,72], where the phase factor ϕi(t ) and the
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displacement χ
(q)
i (t, t0) are given by [48,74]

ϕi(t ) = e2

h̄2

∑
q

∫ t

t0

dt1

∫ t1

t0

dt2[g(ωq) · μii(t1)][g(ωq)

· μii(t2)] sin[ωq(t1 − t2)],

χ
(q)
i (t, t0) = −1

h̄

∫ t

t0

dτ eiωqτμii(τ ) · g(ωq), (A11)

noting that in these expressions we have further defined
μij(t ) ≡ 〈ψi|R̂(t )|ψj〉.

As we can see, the solution for each equation depends
on the other, as expected from the coupled structure of
the considered system of equations. In fact, by introducing
(A9) inside (A10) and vice versa, we get a set of recursive
relations

|
b(t )〉 = D̂(χb(t, t0))|
b(t, t0)〉 − i

h̄

∫ t

t0

dt1D̂(χb(t, t1))M̂ba(t1)D̂(χa(t1, t0))|
a(t0)〉

+
(

i

h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2D̂(χb(t, t1))M̂ba(t1)D̂(χa(t1, t2))M̂ab(t2)|
b(t2)〉, (A12)

|
a(t )〉 = D̂(χa(t, t0))|
a(t, t0)〉 − i

h̄

∫ t

t0

dt1D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t0))|
b(t0)〉

+
(

i

h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t2))M̂ba(t2)|
a(t2)〉, (A13)

and as mentioned in the main text, each iteration of these recursive relations explicitly introduces higher-order transitions between
the bonding and antibonding components from the initial state at t0. Note that, in our case, we assume that initially the electron
is located in the ground (bonding) state and the field in a vacuum state (within the displaced quantum-optical frame). Thus, we
have that |
b(t0)〉 = ⊗

q |0q〉 ≡ |0̄〉 and |
a(t0)〉 = 0, which introduced in (A12) and (A13) lead to the recursive expressions
shown in the main text:

|
b(t )〉 = D̂(χb(t, t0))|0̄〉 +
(

i

h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2D̂(χb(t, t1))M̂ba(t1)D̂(χa(t1, t2))M̂ab(t2)|
b(t2)〉, (A14)

|
a(t )〉 = − i

h̄

∫ t

t0

dt1D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t0))|0̄〉

+
(

i

h̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t2))M̂ba(t2)|
a(t2)〉. (A15)

As mentioned earlier, each iteration in the recursive rela-
tion introduces a new interaction between the bonding and
antibonding states. In the following, we restrict our equa-
tions to the first-order interaction terms, i.e., we only allow
the electron to perform a single transition from a bonding
to an antibonding state. This approximation is valid in the
regime |μbb(t )| > |μba(t )| and |μaa(t )| > |μba(t )| [note that
by definition |μba(t )| = |μab(t )|], i.e., when at all integration
times the probability (although in this case we express it in
terms of the square root of the probability) of performing a
transition from the bonding to an antibonding state (or vice
versa) is lower than the probability of staying in a bonding
(antibonding state). In Fig. 9 we show that the conditions
above are satisfied at all times. Here we have considered the
case of R = 2.5 a.u., although this selection is arbitrary since
a similar behavior is observed for the range of bond lengths
considered in this article. The only difference between them
is that for increasing values of R we get that the relative
difference between |μbb(t )| and |μab(t )| [the same applies
for |μaa(t )|] becomes greater. Therefore, up to first order, we
approximate Eqs. (A14) and (A15) by

|
b(t )〉 ≈ D̂(χb(t, t0))|0̄〉, (A16)

|
a(t )〉 ≈ − i

h̄

∫ t

t0

dt1D̂(χa(t, t1))M̂ab(t1)D̂(χb(t1, t0))|0̄〉.

(A17)

3. Equations for the many-molecule scenario

In the main text, we phenomenologically treated the many-
molecule scenario by multiplying the time-dependent dipole
moment matrix elements of the form μii(t ) by the number Nmol

of molecules and the form μij(t ) (with i �= j) by
√

Nmol. This
picture was motivated by the one we presented in Ref. [66],
leading to the expected scaling of the harmonic spectrum as
described in Ref. [76] (also refer to Sec. 4 of the Supplemen-
tary Material in Ref. [75]). In this section we want to include
a more elaborate basis for this phenomenological treatment.

Let us consider the case where we have Nmol independent
molecules excited by the driving field. In this case, the Hamil-

FIG. 9. Different matrix elements of the time-dependent dipole
moment for the case of R = 2.5 a.u., under the excitation conditions
we have worked with throughout the main text (see, for instance, the
caption of Fig. 2).
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tonian of this system can be written as

Ĥ =
Nmol∑
i=1

(Ĥi,mol + Ĥi,int ) + Ĥfield, (A18)

under the Born-Oppenheimer and dipole approximations,
where the index i runs through all the possible molecules
in the system. We anticipate that the dipole approximation
remains valid even in the many-molecule regime, as each
independent molecule effectively experiences the same field
value, although this value might vary from one region of the
molecular gas jet to another due to the spatial dependence of
the field, which is typically in the range of a few microns. To
incorporate these spatial variations within the dipole approx-
imation, one would need to consider Maxwell’s equations to
account for field propagation and laser beam characteristics
(refer, for example, to Refs. [1,108]). Given that this consid-
eration is beyond the scope of the present work, we restrict
ourselves to the simpler scenario where it is assumed that
all electrons experience the same field amplitude. The extent
of validity of this approximation depends on experimental
parameters such as gas jet pressure and laser field characteris-
tics, including beam width and carrier wavelengths. However,
although an idealization, we expect our approximation to hold
when the spatial extent illuminated by the laser field is sig-
nificantly larger than the effective volume occupied by the
gas jet.

By working within the same rotating and displaced frames
as mentioned for the single-molecule scenario, we end up with
the Schrödinger equation

ih̄
∂|�̃N (t )〉

∂t
= e

Nmol∑
i=1

R̂i(t ) · Ê(t )|�̃N (t )〉, (A19)

where we have denoted by |�̃N (t )〉 the joint state between
the many molecules and the field. Following the same
steps as in the single-molecule analysis, where we neglected
the contribution at all times of all continuum and bound
states (different from the ground and first excited ones), we
project this equation with respect to |ψm〉 = |ψ1,i〉 ⊗ |ψ2,j〉
⊗ · · · ⊗ |ψNmol,N〉, where i, j, . . . , N ∈ {a, b}. Thus, here m =
{(1, i), (2, j), . . . , (Nmol, N)} denotes in what state each of the
molecules is. By implementing this projection, we get

ih̄
d|
m(t )〉

dt
= e

∑
n

(
〈ψm|

Nmol∑
i=1

R̂i(t )|ψn〉 · Ê(t )|
n(t )〉
)

,

(A20)
where the sum over n runs through all the possible combina-
tions of states in the molecules. Let us consider the scenario
where it is very unlikely for a single molecule to perform a
transition from a bonding to an antibonding state such that
at the end of the HHG process, almost all molecules end up
in the initial state except one, which we allow undergoing a
bonding-antibonding transition. This means that in the sum-
mation over n we consider only those elements for which
n = b̄ := {m : i = j = · · · = N = b} and n = āk := {m : i =
j = · · · �= k �= · · · = N = b & k = a}, i.e., there is at least one
molecule (the kth molecule) which is in an antibonding state.
Under this assumption and having in mind that 〈ψa|ψb〉 = 0,

our system of equations reads

ih̄
d|
b̄(t )〉

dt
= Nmolμbb(t ) · Ê(t )|
b̄(t )〉

+μba(t ) · Ê(t )
Nmol∑
k=1

|
āk (t )〉, (A21)

ih̄
d|
āk (t )〉

dt
= [μaa(t ) + (Nmol − 1)μbb(t )] · Ê(t )|
āk (t )〉

+μab(t ) · Ê(t )|
b̄(t )〉 ∀ k ∈ {1, 2, . . . , Nmol}.
(A22)

Note that these equations are very similar to the ones we
have solved previously. In fact, once taking into account
the initial conditions (all molecules initially in their ground
state) and neglecting higher-order transition terms as in the
single-molecule scenario, the solution to this differential
equation reads

|
b̄(t )〉 ≈ D̂(Nmolχb(t, t0))|0̄〉, (A23)

|
āk (t )〉 ≈ − i

h̄

∫ t

t0

dt1D̂(χa(t, t1) + (Nmol − 1)χb(t, t1))

×M̂ab(t1)D̂(Nmolχb(t1, t0))|0̄〉. (A24)

When working with a larger number of molecules, we can
approximate Nmol − 1 ≈ Nmol. In addition, by further approx-
imating Nmolχb(t, t1) + χa(t, t1) ≈ Nmolχb(t, t1), we write the
state in Eq. (A24) as

|
ā(t )〉 = − i

h̄
D̂(Nmolχb(t, t0))

∫ t

t0

dt1eθbμab(t )

· [Ê(t1) + E (b)
cl (t1)]|0̄〉, (A25)

where we have defined

θb = N2
mol

∑
q

1

2

{
χ

(q)
b (t, t1)

[
χ

(q)
b (t1, t0)

]∗

−[
χ

(q)
b (t, t1)

]∗
χ

(q)
b (t1, t0)

}
, (A26)

E (b)
cl (t ) = −iNmol

∑
q

g(ωq)
{[

χ
(q)
b (t, t0)

]∗
eiωqt

−χ
(q)
b (t, t0)e−iωqt

}
. (A27)

Then the joint state of the system is given by

|�̃(t )〉 = 1√
N

(
|ψb̄〉|
b̄(t )〉 +

Nmol∑
k=1

|ψāk 〉|
āk 〉
)

= 1√
N

[|ψb̄〉|
b̄(t )〉 +
√

Nmol|ψā〉|
ā〉], (A28)

where in going from the first to the second equality we have
taken into account that all the states of the form |
āk 〉 are
independent of k. For this reason, we remove the index here-
upon. Moreover, we defined |ψā〉 = (1/

√
Nmol)

∑Nmol
k=1 |ψāk 〉.

Note that these results can be obtained from the single-
molecular analysis by changing μbb(t ) → Nmolμbb(t ) and
μij(t ) → √

Nmolμij(t ). Moreover, note that in the case that
Nmol becomes extremely large, it can dominate over the
bonding-bonding contribution. We expect that, in this regime,
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one has to go further than the first-order perturbation theory
under which we have been working. Thus, in the numerical
calculations we are restricted to situations where the prob-
ability of having (many-molecule) events ending up in an
antibonding state is smaller than that where all molecules end
up in a bonding state.

These are the expressions used in our numerical calcula-
tions. However, in the remnant of this Appendix material, we
also introduce the notation

|
ā(t )〉 = D̂(χb(t, t0))
∑
q=1

⎛
⎝h(q)

1 (t )|1q〉
⊗
q′ �=q

|0〉+h(q)
2 (t )|0̄〉

⎞
⎠,

(A29)

where we have defined

h(q)
1 = − i

h̄

√
Nmol

∫ t

t0

dt1eθ̄b g(ωq) · μab(t1)eiωqt1 , (A30)

h(q)
2 (t ) = − i

h̄

√
Nmol

∫ t

t0

dt1eθ̄bμab(t1) · E (q)
cl (t1). (A31)

At some point in the rest of the Appendixes, we will work
with H2(t ) ≡ ∑

q h(q)
2 (t ).

APPENDIX B: DETAILS ABOUT
THE NUMERICAL ANALYSIS

The numerical analysis leading to the results presented
in the main text was divided into two parts. The first part
involved the analysis of the strong-field-related quantities,
specifically focusing on the matrix elements of the time-
dependent dipole moment. Subsequently, the second part
encompassed the analysis of quantum-optical observables and
quantum-information measures.

For the first part, the analysis was exclusively conducted
in FORTRAN. This numerical investigation involved computing
the time-dependent dipole moment matrix elements μij(t ).
The computation requires solving a double integration, one
over electronic momentum and another over time. Given
the highly oscillatory nature of the integrands, typical of
strong-field analyses, the saddle-point approximation can be
employed with the aim of simplifying the evaluation of the
integrals [13]. In our case, we applied the saddle-point approx-
imation solely to the momentum integral, while the remaining
time integral was computed using standard numerical meth-
ods, specifically through Gauss-Legendre quadratures. The
number of nodes in the quadratures was adjusted manually to
ensure convergence of the integrals. Each instance leading to
Fig. 9 took approximately one minute, with the total number
of points set to around 1000.

The second part of the numerical evaluation, involving the
quantum-optical observables and the quantum-information
measures, was conducted in PYTHON. In this case, the main
numerical effort involved solving the time integral in Eq. (11)
and those arising from Eq. (13). The following are the main
steps involved in this part.

(i) Perform a numerical interpolation of the μij(t ) data set
obtained from the FORTRAN calculations. This interpolation
was carried out using the built-in interpolate.interp1d
function of the SCIPY package, utilizing cubic spline in-

terpolation. The performance of this interpolation is nearly
instantaneous.

(ii) Integrate the μij-dependent integrals using the built-
in integrate.quad function of the SCIPY package, which
employs adaptive integration. In this case, the relative error
limit for the integrals was set to 10−8 [it is important to note
that, without the prefactor |g(ω)|, the integrals yield results
on the order of magnitude 10−1]. Convergence was achieved
by adjusting the upper bound on the number of subintervals
used in the adaptive algorithm. Hence, if convergence is not
attained, the PYTHON compiler automatically issues a message
indicating so. The computation of all the necessary integrals,
with the desired accuracy, takes approximately an hour.

(iii) For the entanglement analysis and the Wigner function
computations, the QUTIP package was utilized to represent
quantum-optical states in the Fock basis.

APPENDIX C: COMPUTING AND LOWER BOUNDING
DIFFERENT ENTANGLEMENT MEASURES

AND WITNESSES

1. Characterization of light-matter entanglement

In this section we show how we computed the entropy
of entanglement for characterizing the light-matter entangle-
ment, ultimately leading to the results shown in Fig. 6 of the
main text. We first trace over either the electronic or the field
degrees of freedom. In our case, we selected the first approach,
since effectively the electron can be studied as a two-level
system where only the bonding and antibonding states are
populated. For the second approach, when working with the
quantum-optical degrees of freedom instead, because of the
presence of the displacement operators, a continuous set of
modes should be considered.

Thus, the electronic state, once the quantum-optical modes
are traced out, is given by

ρ̂elec(t ) = tr f [|�̃(t )〉〈�̃(t )|]

= 1

N [|ψb〉〈ψb| + Na|ψa〉〈ψa|

+
√
Na〈
̄a(t )|
b(t )〉|ψb〉〈ψa|

+
√
Na〈
b(t )|
̄a(t )〉|ψa〉〈ψb|], (C1)

where we have that

√
Na〈
b(t )|
̄a(t )〉 = H2(t ), (C2)

with the H2(t ) and h(q)
1 (t ) functions defined in Eqs. (A30) and

(A31). The density matrix shown in Eq. (C1) has the form
of a single-qubit matrix which one could easily numerically
diagonalize. We did this using the SCIPY package of PYTHON

[109], to find two eigenvalues {λ1, λ2}. With this, the entropy
of entanglement can be easily computed as

S(ρ̂elec(t )) = −tr[ρ̂elec(t ) log2 ρ̂elec(t )] = −
2∑

i=1

λi log2 λi.

(C3)

033706-14



QUANTUM-OPTICAL ANALYSIS OF HIGH-ORDER … PHYSICAL REVIEW A 109, 033706 (2024)

2. Characterization of entanglement between harmonic modes

In this section we show how the entanglement between the
harmonic modes for the different cases studied in the main text
is. Specifically, we present the lower bounds used to obtain the
results shown in Figs. 7(c) and 8. For the sake of clarity, we
present each of the cases separately.

a. Entanglement between harmonic modes when conditioning the
electron to be in an antibonding state

In this case we consider the harmonic modes to be di-
vided into two sets A and B such that, when the electron is
conditioned to be found in an antibonding state, i.e., when
projecting Eq. (A29) with respect to |ψa〉, the quantum-optical
state can be written as

|
a(t )〉 = D̂(χb(t, t0))√
Na

[( ∑
q∈A

h(q)
1 (t )|1q〉|0q′ �=q〉

)
|0̄B〉

+ |0̄A〉
( ∑

q∈B

h(q)
1 (t )|1q〉|0q′ �=q〉

)
+ H2(t )|0̄A〉|0̄B〉

]
,

(C4)

where we have defined |0̄A〉 = ⊗
q∈A |0q〉 (the same holds for

B). In order to characterize the amount of entanglement in
this state by using the entropy of entanglement, it is more
convenient for us to work in a different basis set. Specifically,
we express each of the subsystems in terms of the basis set
spanned by the states (we use the set A as an example){

|0̃A〉 = D̂(χb(t, t0))|0̄A〉, |1̃A〉

= 1√
NA

∑
q∈A

h(q)
q (t )D̂(χb(t, t0))|1q〉|0q′ �=q〉, . . .

}
, (C5)

where the ellipsis represents orthonormal states to the other
two. We note that the two states we have considered contain,
within a displaced frame, either zero or one excitation of the
field modes. Thus, the extra orthonormal states included in
the ellipsis can be obtained, for instance, by means of the
Gram-Schmidt decomposition and using Fock states (within
the displaced frame) containing more than two excitations.
Nevertheless, in our case it is enough to just consider the ones
explicitly shown in Eq. (C5) as, by means of these, we can
rewrite Eq. (C4) as

|
a(t )〉 = 1√
Na

[
√

NA|1̃A〉|0̃B〉 + √
NB|0̃A〉|1̃B〉

+ H2(t )|0̃A〉|0̃B〉]. (C6)

After tracing out one of the subsystems’ degrees of freedom
(for instance, B), we obtain the reduced density matrix for the
other state

ρ̂A
a (t ) = trB[|
a(t )〉〈
a(t )|]

= 1

Na
[NA|1̃A〉〈1̃A| + [NB + |H2(t )|2]|0̃A〉〈0̃A|

+ H∗
2 (t )

√
NA|1̃A〉〈0̃A| + H2(t )

√
NA|0̃A〉〈1̃A|],

(C7)

for which the entropy of entanglement can be computed fol-
lowing a procedure similar to that of Appendix C 1.

b. Entanglement between harmonic modes when conditioning
the electron to be in a localized right or left state

The calculation of the entropy of entanglement in this case
can be obtained in a very straightforward way by redefining
H2(t ) → 1 + H2(t ) in the preceding section, arising from the
contribution of the bonding component not appearing before.

c. Entanglement between harmonic modes when the final
state of the electron is unknown

In this section we focus on the case where we have no
knowledge about what state the electron has recombined with.
For convenience, we work with the bonding and antibonding
quantum-optical components such that after tracing out the
electronic degrees of freedom we have, for the quantum-
optical state,

ρ̂ f (t ) = 1

N [|
b(t )〉〈
b(t )| + |
a(t )〉〈
a(t )|]

= 1

N [ρ̂b(t ) + Naρ̂a(t )], (C8)

which indeed coincides with Eq. (16).
Our aim is to study the amount of entanglement present in

the state (C8) between a single mode q̃ and the rest. However,
unlike the previous case, here we are working with mixed
states for which the entropy of entanglement is not a valid
entanglement measure. Instead, we work with the logarithmic
negativity [99], defined as EN (ρ̂ ) := log2(2N + 1), where N
is the negativity, i.e., the sum of all negative eigenvalues (in
absolute value) of the partial transpose of ρ̂ with respect to one
of the subsystems. In our case, if we define subsystems Ā :=
{q̃} and B̄ := {q : ∀ q �= q̃} and consider the partial transpose
with respect to subsystem B̄, we then have

ρ̂
TB̄
f (t ) = 1

N
[
ρ̂b(t ) + Naρ̂

TB
a (t )

]
, (C9)

where we have taken into account that ρ̂b(t ) is actually a
pure separable state and does not get affected by the partial
transpose operation.

In order to compute the negativity, we first need to find
the negative eigenvalues of Eq. (C9). The main problem here
is that, because of the different displacement operations ap-
pearing in the definitions of ρ̂a(t ) and ρ̂b(t ), we cannot look
for a proper basis as in Eq. (C5), which allows us to make the
calculations manageable. Therefore, in order to formally com-
pute the negativity, we would have to consider the full basis set
which, in the Fock representation, is composed of hundreds of
states. Thus, instead of computing the logarithmic negativity
exactly, we propose a lower bound that is easier to handle
numerically. For this we first take into account that, given
three Hermitian matrices A, B, and C = A + B, with respec-
tive eigenvalues {a1 > a2 > · · · > an}, {b1 > b2 > · · · > bn},
and {c1 > c2 > · · · > cn}, the following relationship holds for
their eigenvalues [110,111]:

ci+ j−1 � ai + b j for i + j − 1 � n. (C10)
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If we focus on the potential negative eigenvalues that C
could have, we can write for their absolute value

|ci+ j−1| � |ai + b j | (C11)

such that if we identify A = ρ̂
TB̄
a , B = ρ̂b(t ), and C = ρ̂

TB̄
f (t ),

we can write, for the negativity of C,

N =
∑
ci<0

|ci| �
∑

ai+b j<0

|min
i, j

(ai + b j )| � |min
i

ai|, (C12)

where in the last inequality we have taken into account that B
does not have, by definition, negative eigenvalues and its low-
est eigenvalue is zero since it is a pure separable state. Thus,
the last inequality corresponds to the minimum eigenvalue
found for A. Having this relationship in mind, we propose
the lower bound for the logarithmic negativity

EN (ρ̂ ) � EN (ρ̂ ) = log2(2|min
i

ai| + 1), (C13)

which is what is actually shown in Fig. 8 of the main text.
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