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Squeezed states of light after high-order harmonic generation in excited atomic systems
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High-harmonic generation (HHG) has recently emerged as a promising method for generating nonclassical
states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we
theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that
were initially driven to their first excited state. Our study reveals significant single-mode squeezing in both the
driving field and low-order harmonic modes. Additionally, we characterize two-mode squeezing features in the
generated states, both between fundamental and harmonic modes, and among the harmonic modes themselves.
Using these correlations, we demonstrate the generation of optical Schrödinger kitten states through heralding
measurements, specifically via photon subtraction in one of the modes influenced by two-mode squeezing.
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I. INTRODUCTION

Nonclassical states of light are defined as states whose
properties cannot be described by classical electromagnetism,
and therefore require the framework of quantum optics. These
states have become crucial for the development of photonic
quantum technologies [1], providing versatile and resilient
tools for quantum information science applications [2–6].
Among them, squeezed states have been of fundamental im-
portance. These states exhibit reduced levels of noise for
specific physical observables compared to classical states, at
the expense of increased uncertainty in the corresponding
conjugate observable, while still complying with Heisenberg’s
uncertainty principle [7–9]. For this reason, they have been
essential for improving measurement sensitivity in interfero-
metric setups [10–17]. Additionally, they have been used as a
source of more elaborate nonclassical states of light [18–20].

The generation of squeezed states, in practice, typically
relies on nonlinear optical processes such as four-wave mixing
[11], optical parametric oscillators [21,22], or optical para-
metric amplification [23]. However, despite high-harmonic
generation (HHG) being one of the most prominent examples
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of nonlinear optical phenomena known to date, its capabil-
ities for generating squeezed states and other nonclassical
states of light have only recently been explored [24,25]. In
HHG, high-intensity infrared (IR) radiation is up-converted
into high-frequency radiation after subfemtosecond electron
dynamics driven in a given matter system, producing fre-
quencies that span from the infrared regime to the extreme
ultraviolet (XUV) [26–28]. Consequently, HHG has been used
in various applications, from the generation of XUV radia-
tion sources [29,30] to attosecond science [31,32]. Within a
quantum optical context, recent experimental [24,33–35] and
theoretical [36–40] studies showed that HHG can produce
states of light with nonclassical features, including squeezed
states, as evidenced in experiments [41] and theoretical mod-
els [42–44]. Furthermore, squeezed states have been used to
drive HHG processes both experimentally [45,46] and theo-
retically [47,48], with predictions suggesting the generation
of high-order harmonic squeezed states [49].

The generation of squeezed states and other nonclassical
states of light directly from classical HHG setups, where a
classical driving field interacts with a matter system, strongly
depends on the cross talk between different energy levels
of the system. In Ref. [42], the observed squeezing and
entanglement features resulted from correlations between
the time-dependent dipole moment at different times. These
correlations became significant when fields with sufficient
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intensity were used, which inevitably caused nonnegligible
depletion of the ground state of the system [50,51]. Under
these conditions, substantial squeezing was observed in the
fundamental mode, with properties depending on the specific
excitation conditions. In Ref. [43], a theoretical analysis of
HHG driven in a one-dimensional (1D) Fermi-Hubbard model
revealed significant nonclassical features on the field when
the matter system was in the Mott-insulating phase, where
the coupling between different sites in the chain becomes
nonvanishing. Conversely, these features were absent in the
corresponding uncorrelated phase. Similar results were ob-
served in the context of HHG in semiconductor materials [52],
attributed to the delocalized nature of the electron dynamics
resulting in HHG [53,54]. Furthermore, in solid-state systems,
experimental observations have indicated the presence of two-
mode squeezing features between low-order harmonics [41],
which seemed to result from Bloch oscillations of electrons
within the conduction band of the solid [55].

In this work, we deviate from these studies by considering
the active participation of excited states of atomic systems
during the HHG process [56–58]. Recently, the authors of
Ref. [44] demonstrated that the backaction of the generated
harmonics on the coupling between ground and excited states,
potentially enhanced by a cavity, can be a versatile tool for
generating various nonclassical states of light. This includes
squeezed-like states, with properties strongly influenced by
the mean photon number of the generated harmonics. Addi-
tionally, the authors of Ref. [59] reported nonclassical features
affecting both light and matter when driving HHG in diatomic
molecular systems. These features arose from the involve-
ment of both ground and excited states due to the various
pathways electrons can take during HHG [60–62]. Moreover,
the authors of Ref. [63] observed that initial entanglement
features involving the ground and excited states of a many-
body system of atoms could be mapped onto the generated
harmonics.

Here, we explore a setup in which atomic systems are ini-
tially pumped to their first excited state before interacting with
a classical, strong-laser field [56,57]. The pumping process
can be achieved by using a pulse resonant with the transition
frequency prior to the strong-field interaction, as in similar
experimental implementations within the strong-field regime
[58]. Within this framework, we report squeezing features on
the quantum optical state that emerge from the cross talk be-
tween the electronic ground and first excited states mediated
by the time-dependent dipole moment. Notably, these squeez-
ing features appear only when the electron initiates and ends
the dynamics in the first excited state, and they are absent in
those instances when the electron recombines with the ground
state. We observe that these squeezing effects influence both
the input driving field and the generated harmonic modes
under field parameters typical of standard HHG experiments.
Additionally, we observe significant two-mode squeezing fea-
tures between different field modes. We demonstrate that
these correlations are sufficient to generate other types of
nonclassical states of light, such as optical Schrödinger kit-
ten states, via heralding measurements, specifically through
photon substraction in one of the modes affected by two-
mode squeezing. This approach offers an alternative to the
postselection schemes described in Refs. [33,34,38–40] for

producing optical Schrödinger kitten-like states via HHG pro-
cesses.

II. THEORETICAL BACKGROUND

Our analysis is based on solving the time-dependent
Schrödinger equation describing the interaction of an atomic
system with a quantized field, assuming the initial state of the
system is |�(t0)〉 = |e〉 ⊗ |αL〉⊗qc

q=2 |0q〉. This implies that
the electron is initially in the (nondegenerate) first excited
state of the atom (|e〉), and the field is in a product of coherent
states where mode q = 1 ≡ L has amplitude |αL| � 1, with
the rest in the vacuum state. This scenario can be prepared by
first applying a π pulse resonant with the transition between
the atomic ground (|g〉) and first excited states, followed by a
strong-laser field represented by the coherent state |αL〉. Under
the length gauge, and the dipole and single-active-electron
approximations, the Schrödinger equation for this system can
be expressed as [33,34,40]

ih̄
∂|�(t )〉

∂t
= Ê (t )d̂ (t )|�(t )〉, (1)

in the interaction picture with respect to the free-field
Hamiltonian Ĥfield = ∑qc

q=1 h̄ωqâ†
qâq, in the displaced frame-

work with respect to |αL〉, and within the interaction
picture with respect to the semiclassical Hamiltonian
Ĥsc(t ) = Ĥat + Ecl(t )d̂ . Here, d̂ represents the dipole mo-
ment operator and d̂ (t ) = Ûsc(t )d̂U †

sc(t ) its time-dependent
version, with Ûsc(t, t0) = T̂ exp[− i

h̄

∫ t
t0

dτ Ĥsc(τ )], where T̂
represents the time-ordering operator; Ê (t ) = ∑qc

q=1 Êq(t ) =
−i f (t )

∑qc
q=1 g(ωq)[âe−iωqt − H.c.] is the electric field op-

erator with 0 � f (t ) � 1 an envelope function compatible
with the applied field envelope and g(ω) ≡ √

h̄ω/(2V ε0); and
Êcl(t ) = 〈αL, {0}qc

q=2|Ê (t )|αL, {0}qc
q=2〉. While a fully rigorous

quantum optical analysis would typically require an infinite
number of modes to represent a continuous spectrum, we ap-
ply the envelope function f (t ) both to confine the interaction
to a finite time interval and to recover the classical-pulsed field
expressions. This approach yields results equivalent to those
obtained when using multimode descriptions of the driving
laser field [34,40], while preserving the simplicity of using
single-mode drivers, which, in particular, benefits numerical
analyses. However, it is important to note that the expressions
derived in this work are formulated in terms of Ê (t ) and Ecl(t ),
making our results readily extendable to more comprehensive
multimode descriptions.

Within the displaced framework of Eq. (1), under which
the initial state reads as |�(t0)〉 = |e〉⊗qc

q=1 |0q〉 ≡ |e〉 ⊗ |0̄〉,
we proceed to solve the dynamics. To do so, similarly as in
Refs. [33,34,40], we neglect the continuum populations at all
times, assuming their contribution to be small compared to
those of the lowest-energy atomic states [56,57]. This leads
to the following set of coupled differential equations (see
Appendix A):

ih̄
∂|	g(t )〉

∂t
= μgg(t )Ê (t )|	g(t )〉 + μge(t )Ê (t )|	e(t )〉, (2)

ih̄
∂|	e(t )〉

∂t
= μeg(t )Ê (t )|	g(t )〉 + μee(t )Ê (t )|	e(t )〉, (3)
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where μij(t ) ≡ 〈i|d̂ (t )|j〉 and |	i(t )〉 ≡ 〈i|�(t )〉. It is worth
noting that, although continuum states are not taken into ac-
count in the interaction picture we are working with, they are
considered in the computation of μij(t ) [56,57].

For the parameters considered here (peak intensity I0 =
1014 W/cm2, central wavelength λL = 800 nm, and ionization
potentials Ip,g = 54.4 eV and Ip,e = 13.6 eV), it is found that
|μee(t )| � |μeg(t )| � |μgg(t )| (see Appendix A). This allows
us to write the following perturbation theory solution for
Eq. (2):

|	g(t )〉 ≈ − i

h̄

∫ t

t0

dτμge(τ )Ê (τ )|	e(τ )〉, (4)

and introducing this expression into Eq. (3) results in

ih̄
∂|	e(t )〉

∂t
≈ μee(t )Ê (t )|	e(t )〉 + μeg(t )Ê (t )|	g(t )〉

− i

h̄
μeg(t )Ê (t )

∫ t

t0

dτμge(τ )Ê (τ )|	e(τ )〉,
(5)

where we note here that we have now accounted for the initial
conditions specified earlier, assuming the electron is initially
in the atom’s first excited state. The more general scenario,
with arbitrary initial state conditions for the atomic system, is
evaluated in Appendix A.

To simplify the analysis of Eq. (5), we perform a Markov-
like approximation, i.e., |	e(τ )〉 → |	e(t )〉, which neglects
transient changes on the quantum optical state between times
t0 and t , effectively assuming that the cumulative influence of
past interactions can be represented by an instantaneous oper-
ator acting on the state at time t . These transient changes could
be related to quantum optical fluctuations arising from the
electron’s oscillation during its excursion in the continuum.
A more detailed analysis of these effects and their influence
during the HHG processes can be found in Ref. [64]. Under
this approximation, a solution to Eq. (5) can be expressed as
(see Appendix A)

|	e(t )〉 ≈Û (t, t0)|0̄〉

+ 1

h̄2

∫ t

t0

dτ1Û (t, τ1)μeg(τ1)Ê (τ1)

×
∫ τ1

t0

dτ2μge(τ2)Ê (τ2)Û (τ2, t0)|0̄〉, (6)

where Û (t, t0) is given, up to a phase prefactor, by

Û (t, t0) = D̂
(
χe(t )

)
exp

[
− i

h̄

∫ t

t0

dτ Q̂(τ )

]
, (7)

where D̂(χe(t )) ≡ ∏qc
q=1 D̂(χ (q)

e (t )) with D̂q(·) being
the displacement operator acting on the qth harmonic
mode [8]; χ

(q)
e (t ) ∝ g(ωq)

∫ t
t0

dτμee(τ )eiωqτ ; and Q̂(t ) ≡
i
h̄μeg(t )Ê (t )

∫ t
t0

dτμge(τ )Ê (τ ).
From Eq. (6) we see that, in addition to the displacement

operator, the field degrees of freedom are also affected by an
operator that is second order in Ê (t ). This involves second-
order terms with respect to creation and annihilation operators
acting on the different modes, ultimately leading to the pres-
ence of squeezing and entanglement between the field modes

[42]. These phenomena originate from the cross talk between
the ground and first excited states through the time-dependent
dipole moment operator d̂ (t ), represented here by μeg(t ) [59].
It is worth noting that this cross talk might only involve
population exchanges mediated by the electronic continuum
states if both excited and ground states have the same parity.

It is also important to note that the contribution of these
squeezing-like terms is much smaller than the contributions
stemming from the displacement χ

(q)
e (t ), as the first are pro-

portional to g(ωL )2 while the second to g(ωL ), with g(ωL )
being a perturbative quantity [59,65]. Consequently, to ob-
serve squeezing and entanglement effects, it is necessary to
consider the collective contribution of many atoms [42]. This,
a priori, involves solving the strong-field dynamics for a
many-body problem involving a total of Nat atoms, with each
atom coupled to the same electromagnetic field. However,
assuming that the time-dependent dipole moments of differ-
ent atoms are uncorrelated [66], the potential correlations
between different atoms arising due to this light-mediated
dynamics average to zero (see Appendix B), with standard
deviations being proportional to g(ωL )4. Hence, from the point
of view of our analysis, which focuses on the squeezing
properties of the field that scale as g(ωL )2, we can regard
the interaction of each atom with the electromagnetic field
as independent. This implies that, assuming all atoms are
initially in the same state, the many-body evolution can be
approximately written as

|�(t )〉 ≈
Nat∏
i=1

U(t, t0)
Nat⊗
i=1

|e〉 ⊗ |0̄〉, (8)

with U(t, t0) the time-evolution operator obtained from
Eq. (1), and that approximately leads to Eqs. (4) and (6).

Among all possible outcomes, we particularly focus on
scenarios where all electrons return to their initial state, i.e.,
the excited state. Hence, upon returning to the original frame
of reference for the electronic degrees of freedom, we obtain
(see Appendix B)

|	̄e(t )〉 =
[
Û (t, t0) + 1

h̄2

∫ t

t0

dτ1Û (t, τ1)μeg(τ1)Ê (τ1)

×
∫ τ1

t0

dτ2μge(τ2)Ê (τ2)Û (τ2, t0)

]Nat

|0̄〉 (9)

≈ [Û (t, t0)]Nat |0̄〉, (10)

where we approximate the total state by considering only
the first contribution, which is valid under the condition
Natg(ωL )2 � 1, ensuring that the second term in Eq. (9) is
significantly smaller than the first one. This condition sets the
stage for the results discussed in the next section.

It is worth noting here that when events where the electron
recombines in the ground state, or begins in the ground state
and recombines in the excited state, are considered, we ob-
serve delocalized single-photon excitations spanning multiple
harmonic modes (see also Appendix A). This configuration
leads to nonclassicality and entanglement across harmonic
modes, similar to those observed in the quantum optical treat-
ment of HHG in molecular systems in Ref. [59]. Due to these
similarities, and given our focus on squeezing features, we
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refer interested readers to the aforementioned reference for
further details.

III. RESULTS

In this section, we characterize the squeezing properties of
the state in Eq. (10) using a constructive approach. Initially,
we neglect the contribution of âqâq′ and related second-order
terms where q �= q′, to identify which harmonic modes are
most affected by squeezing. Subsequently, we incorporate
these additional terms. The numerical analysis presented in
this section considers an applied pulse with sin2 envelope,
I0 = 1014 W/cm2, λL = 800 nm, and �t ≈ 16 fs of duration,
while setting the ionization potentials of the atomic system
to Ip,g = 54.4 eV and Ip,e = 13.6 eV, corresponding to those
of He+ [56,57]. Details about the numerical implementation
can be found in the Appendixes. While our theory is suffi-
ciently general to encompass atomic systems that satisfy the
|μgg(t )| < |μeg(t )| condition, our selection of He+ is based
on its lack of significant HHG radiation when the electron be-
gins in the ground state, thereby meeting the aforementioned
condition. Additionally, its prior use in semiclassical analyses
provides a valuable benchmark for our results [56,57]. In fact,
experimental observations of HHG using initial electronic
superpositions spanning several excited states have involved
alkali atoms, with a near-infrared driver to create the initial
excited state and a midinfrared driver for the strong-field
interaction [58].

A. Single-mode squeezing

When referring to single-mode squeezed states, we are
describing quantum optical states where the uncertainty in
one optical quadrature, hereupon �X̂ ≡ 〈X̂ 2〉 − 〈X̂ 〉2, is re-
duced below the uncertainty found for coherent states (�X =
1/2), at the expense of increased uncertainty in the conjugate
quadrature � ˆ̄X . Here, we aim to determine whether states in
the form of Eq. (10), after neglecting correlations between
the different optical modes, can exhibit such features. This
expectation arises since, in that scenario, Eq. (10) can be
rewritten as

|	̄e(t )〉 ≈ D̂
(
χ̃
)

exp

⎡
⎣−

qc∑
q=1

iNat

h̄

∫ t

t0

dτ Q̂q,q(τ )

⎤
⎦|0̄〉, (11)

where Q̂q,q(t ) ≡ i
h̄μeg(t )Êq(t )

∫ t
t0

dτμge(τ )Êq(τ ), which in-
volves second-order terms of creation and annihilation
operators. In this expression, χ̃ ≡ f [χe(t )], where f (·) is a
function that depends on the prefactors accompanying the
product between creation and annihilation operators in Q̂q,q

1.
Given the definition of squeezed states presented in the

previous paragraph, a natural way to determine the amount
of squeezing in Eq. (11) is by identifying a direction in phase

1This can be easily seen from the fact that we can al-
ways write [ f (â2, â†â), g(â)] = h(â), with f (·), g(·) and h(·)
linear functions of the corresponding operators. Therefore,
exp[− f (â2, â†â)] exp[g(â)] exp[ f (â2, â†â)] = exp[h̃(â)], where h̃(·)
does not necessarily have to be equal to h(·).

FIG. 1. Amount of single-mode squeezing for different harmonic
orders. In panel (a), the blue curve shows the results of the optimiza-
tion from Eq. (12), while the orange curve displays the variance of
the conjugate variable. Their product is represented by the dashed
black curve, corresponding to the minimum Heisenberg uncertainty.
The gray dotted line shows �Xq = �X̄q for the case of having a
coherent state in each harmonic mode. In panel (b), the squeez-
ing parameter is computed as r = −(1/2) log10[2�Xq(θ∗)]. We set
Natg(ωL )2 = 1 a.u., with the atomic units (a.u.) obtained by setting
h̄ = me = |e| = 1.

space along which there is a decrease in uncertainty in the
corresponding photonic quadrature. To achieve this, we define
a phase-dependent quadrature X̂q(θ ) = X̂q cos(θ ) + ˆ̄Xq sin(θ ),

with X̂q = (âq + â†
q)/

√
2 and ˆ̄Xq = (â†

q − âq)/(i
√

2), and de-
fine the optimal squeezing direction θ∗ as that satisfying

�Xq(θ∗) = min
θ

[�Xq(θ )], (12)

where the expected values involved in the variance are taken
with respect to the state in Eq. (11).

The results from the optimization in Eq. (12) are depicted
in Fig. 1 for harmonic modes smaller than q = 5. Beyond
this value, the obtained results were below the numerical
precision of the used software. In Fig. 1(a) we display the
optimal values of the quadrature uncertainties (blue and or-
ange curves) and their product (black dashed line), which is
expected to remain constant everywhere and equal to 1/4.
However, the uncertainties along the different quadratures do
not uniformly reach 1/2 for all harmonic modes (gray dotted
line), exhibiting peaks for harmonics q = 1 (fundamental)
and q = 3. This suggests the presence of significant squeez-
ing for these specific harmonic modes. This observation is
reinforced in Fig. 1(b), where the squeezing parameter r =
−(1/2) log10[2�Xq(θ∗)] is plotted for the different harmonic
modes. A smaller value of r indicates less pronounced squeez-
ing features in our state. These plots reveal additional peaks
for even harmonic orders, albeit diminishing as q increases.

The calculations leading to Fig. 1 were performed with
Natg(ωL )2 = 1. However, it is anticipated that increasing this
quantity would enhance the squeezing effects. This enhance-
ment is indeed illustrated in Fig. 2, where Fig. 2(a) presents
the amount of squeezing (in dB units) as a function of
Natg(ωL )2. The plot shows an increase in the total amount of
squeezing for larger values of this parameter, as further exem-
plified in the Wigner function representations for modes q = 1
[Figs. 2(b) and 2(d) with squeezing of 0.763 and 1.411 dB,
respectively] and q = 3 [Figs. 2(c) and 2(e) with squeezing
of 0.277 and 0.526 dB, respectively]. In these subplots, the
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FIG. 2. In panel (a), the amount of squeezing as a function
of Natg(ωL )2 for different harmonic modes. The results are pre-
sented in dB, related to the squeezing parameter r through [dB] =
10 log10(e2|r|), and for values of Natg(ωL )2 ∈ [10−4, 2]. In panel (b),
the Wigner functions of the obtained states are displayed for various
values of q and Natg(ωL )2, the second of these represented in atomic
units. The black and gray dashed lines compare the squeezing be-
tween the leftmost and rightmost Wigner functions, respectively.

vertical and horizontal dashed lines delineate the quadrature
uncertainties for modes q = 1 (black lines) and q = 3 (gray
lines) for each value of Natg(ωL )2. It is important to note that
excessively large values of this parameter would necessitate
consideration of the influence of the second term in Eq. (9).
Additionally, Nat represents the number of atoms initially in
the excited state, and its value depends on the initial excitation
conditions, including the fidelity of the employed π pulse, and
its time delay relative to the subsequent strong-laser field. For
example, if this delay surpasses the excited state lifetime, the
squeezing features will be absent.

B. Two-mode squeezing

When referring to two-mode squeezed states, we are de-
scribing states that exhibit correlations between two different
modes, denoted as q1 and q2, resulting in uncertainties along
certain components for each mode that are reduced below
those of the vacuum state. Thus, in this scenario, we extend
Eq. (11) to include correlations between modes q1 and q2

|	̄e(t )〉 ≈ D̂
(
χ̄
)

exp

[
− iNat

h̄

∫ t

t0

dτ Q̂{q1,q2}(τ )

]
|0̄〉, (13)

where Q̂{q1,q2} ≡ ∑2
i, j=1 Q̂qi,q j . In this expression, we only

consider correlations between modes q1 and q2, while neglect-
ing the influence of all others. It will be shown later in this
section that, similar to the amount of single-mode squeezing,
the presence of correlations becomes important only for har-
monics q = 1 and 3.

One of the main advantages of two-mode squeezed states,
similarly to single-mode squeezed states, is that their prop-
erties can be entirely characterized through the covariance
matrix σq1,q2 [67], which is defined as

σq1,q2 =
(

A C
CT B

)
, (14)

FIG. 3. In panel (a), we present the maximum eigenvalue of the
covariance matrix σq1,q2 for different pairs (q1, q2). The absence of
squeezing features corresponds to λmax(σ ) = 0.5. In panel (b), we
show the logarithmic negativity computed as in Eq. (18) for various
pairs (q1, q2). We set Natg(ωL )2 = 1 a.u. in both plots.

where A, B, and C are 2 × 2 matrices whose elements are
given by

Ai, j =
〈
X̂i,q1 X̂ j,q1

〉 + 〈
X̂ j,q1 X̂i,q1

〉
2

− 〈
X̂i,q1

〉〈
X̂ j,q1

〉
, (15)

Bi, j =
〈
X̂i,q2 X̂ j,q2

〉 + 〈
X̂ j,q2 X̂i,q2

〉
2

− 〈
X̂i,q2

〉〈
X̂ j,q2

〉
, (16)

Ci, j = 〈X̂i,q1 X̂ j,q2〉 − 〈X̂i,q1〉〈X̂ j,q2〉, (17)

with the expectation value taken with respect to the state in
Eq. (13). Here, we denote X̂1,q ≡ X̂q and X̂2,q ≡ ˆ̄Xq.

By utilizing the covariance matrix, we can equivalently
perform an optimization similar to the one in Eq. (12) by di-
agonalization instead of using parametrization methods. This
diagonalization enables us to identify the principal axes for
the squeezing in phase space, where the different eigenvalues
determine the extent of squeezing along these axes. If the
maximum eigenvalue λmax equals 0.5, it indicates the absence
of squeezing, while λmax > 0.5 indicates squeezing is present.
In Fig. 3(a), we display the maximum eigenvalue for different
values of q1 and q2. Despite the presence of peaks at q2 = 3,
the maximum eigenvalue remains constant and varies depend-
ing on q1. This reflects the single-mode squeezing trends
shown in Fig. 1. However, the introduction of correlations
with other modes extends the total squeezing beyond this
constant value. As observed, the greatest squeezing is found
between modes q = 1 and q = 3, although significant values
can also occur between modes q = 2 and q = 3.

Although observing peaks in λmax suggests the presence of
correlations between the different modes, it does not directly
quantify them. Similarly, the phase-space Wigner function
representations used in the single-mode analysis [Fig. 2(b)]
offer limited insight into the presence of two-mode squeezing
beyond revealing slightly more squeezed functions, as indi-
cated by λmax, in comparison to single-mode squeezing (see
Fig. 6 in Appendix D). As two-mode squeezing inherently
involves quantum correlations between different modes, en-
tanglement measures are essential for accurate identification
[68]. An example of such a measure is the positive partial
transpose (PPT) criterion, also known as Peres-Horodecki
criterion [69,70]. Interestingly, for bipartite Gaussian states
as those considered here, this criterion is a necessary and
sufficient condition for separability [71]. Therefore, based on
this criterion, the logarithmic negativity [68] serves as an
ideal entanglement measure for quantifying the correlations
between modes q1 and q2 arising from Eq. (13). This quantity
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can be computed as [68]

EN (ρ̂ ) = max{0,− log2(2ν̃−)}, (18)

where ν̃− is the smallest of the two symplectic eigenvalues
of the partial transpose of our covariance matrix [72] (see
Appendix D). The results from this analysis are presented in
Fig. 3(b) where, consistent with our previous observations, the
modes most correlated are q = 1 and 3. Interestingly, for odd
values of q1, the logarithmic negativity exhibits peaks for odd
values of q2 and troughs for the even ones. Conversely, the
opposite trend is observed when q1 is even.

The presence of these correlations can be utilized for var-
ious purposes. For instance, in Ref. [19] it was observed that
performing heralding measurements on one of the involved
modes allows for the generation of optical Schrödinger kit-
ten states, i.e., superpositions of two different coherent states
|α〉 and |β〉 with |α − β| < 2. This operation, termed photon
subtraction, was implemented using a single-mode squeezed
state, a beam splitter, and a photodetector heralding the pres-
ence of at least one photon in one of the output modes of the
beam splitter. In this context, the beam splitter’s role was to
introduce correlations between the output beams.

In our case, these correlations are already present be-
tween the different modes as we are dealing with two-mode
squeezed states. Consequently, heralding operations can be
implemented by physically distinguishing between different
modes using a grating system, for example, and detecting
the presence of at least one photon in either mode q1 or q2.
Mathematically, such a measurement can be represented by
the projective operator �̂q2 = 1 ⊗ (1 − |0〉〈0|) when aiming
to obtain the nonclassical state in mode q1, and as �̂q1 = (1 −
|0〉〈0|) ⊗ 1 when targeting mode q2. It is worth noting these
operators are defined in the displaced quantum optical frame
of reference D̂(χ̄), and thus would require the implementation
of displacement operations acting on the heralding mode [73].
Therefore, the heralded state reads, upon normalization, as
ρ̂q1 = trq2 (�̂q2 |	̄e(t )〉〈	̄e(t )|) when performing the heralding
on mode q2.

The results out of this process are presented in Fig. 4 for
different combinations of q1 and q2, with the success prob-
ability of heralding P�(q1) = tr(�̂q2 |	̄e(t )〉〈	̄e(t )|) shown
in the caption. As observed, this approach leads to non-
classical Wigner functions with negative regions, especially
pronounced in the first row, whereas in the second row
[Fig. 4(a2)], the nonclassical features are less pronounced,
and even vanish in some cases [Figs. 4(b2) and 4(c2)]. This
corresponds to cases where correlations are weaker, with the
state being predominantly dominated by a (displaced) vacuum
component (see Appendix D). As the correlations between
the involved modes weaken, the success probability of herald-
ing decreases significantly, as is seen for modes q1 = 3 and
q2 = 5.

It is worth noting that, despite the similarity of the opti-
cal Schrödinger kitten-like states in the first row of Fig. 4
to those reported in Refs. [33,34,38–40], it is the heralding
protocol that sets these results apart. In the referenced stud-
ies, optical Schrödinger kitten-like features were obtained by
postselecting measured data based on energy conservation
relations resulting from HHG processes [74–77]. In contrast,

FIG. 4. Wigner functions for the two-mode squeezing involving
modes q1 and q2 after performing heralding operations in mode q2

(first row) and in mode q1 (second row). For each row, the prob-
abilities of successful heralding are as follows: in (a1) P�(q1) =
2.87 × 10−3 and in (a2) P�(q2) = 6.09 × 10−3; in (b1) P�(q1) =
3.51 × 10−9 and in (b2)P�(q2) = 3.85 × 10−3; in (c1) P�(q1) =
1.38 × 10−9 and in (c2) P�(q2) = 4.87 × 10−4. We set Natg(ωL )2 =
1 a.u. in all plots.

our approach here leverages the entanglement features inher-
ent to two-mode squeezing, allowing a given harmonic mode
to serve as herald for the nonclassical state generated in the
additional mode.

IV. DISCUSSION

While this work investigates single-mode and two-mode
squeezing in various harmonic modes in HHG driven atomic
systems initially in their first excited state, it is essential to
highlight its novel contributions relative to similar state-of-
the-art studies. This comparative perspective can help clarify
the unique aspects of this study and its place within the
broader field.

Despite the presence of two-mode squeezing features, the
results presented here differ from those of Ref. [41] both in
terms of the matter system used and the underlying dynamics
leading to two-mode squeezing. In Ref. [41], the nonclassical
features seemingly arose from Bloch oscillations within a
specific band of the solid-state system [55]. In contrast, the
two-mode squeezing studied here is attributed to the cross-talk
between the atomic ground and first excited states, a mech-
anism more similar to the origin of squeezing in Ref. [42]
and of nonclassical features in Refs. [44,59]. Unlike Ref. [42],
however, this study focuses on interactions between different
bound states, allowing us to observe squeezing features with-
out significant atomic depletion due to tunneling [50,51].

Although our setup involves excited states, it differs from
that in Ref. [44] in that we initially drive the electron to the
excited state before it interacts with the strong-field. Addition-
ally, the nonclassical features observed in our work arise from
second-order effects in g(ωL ), whereas the effects in Ref. [44]
and those in Ref. [59] originate from first-order effects. More
specifically concerning Ref. [44], the observed effects depend
on back-action with a resonant harmonic mode, facilitated by
enclosing the interacting atoms within a cavity whose length
is adjusted to achieve this resonance.
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Despite these distinctions, we believe that a synergistic
approach combining the setup from Ref. [44] with the one
presented in this work would be highly interesting. Incorporat-
ing a cavity could significantly enhance the coupling between
light and matter, thereby strengthening the nonclassical fea-
tures. This enhancement is crucial for observing the squeezing
features reported in our analysis, especially considering the
condition Natg(ωL )2 = 1. Compared to the experimental ob-
servations in Ref. [33], this condition implies Nat ∼ 1016,
while the aforementioned observations suggest contributions
from Nat ∼ 1012–1013 phase-matched atoms. However, uti-
lizing QED cavities as in Ref. [44] allows us to enhance
the light-matter coupling factor g(ω) by several orders of
magnitude, effectively making the generation of nonclassical
states of light more efficient. Alternatively, one could increase
the number of atoms in the interaction region by employing
high-pressure cells or optimizing the laser spot size. Addi-
tionally, considering intermediate excited states, rather than
only the ground and first excited states, could lead to larger
time-dependent dipole moments, as demonstrated in Ref. [58]
to observe extended cutoffs initially reported in Refs. [56,57],
which utilized a configuration similar to that of this work.

V. CONCLUSION

In this work, we explored a pathway for generating
squeezed states of light using HHG by driving atomic systems
initially prepared in their (nondegenerate) first excited state.
We characterized the amount of squeezing in both the driving
field and harmonic modes, finding significant values for the
low-harmonic orders and negligible amounts for the higher
orders. We also investigated two-mode squeezing features and
used the generated correlations to propose heralding mea-
surements that facilitate the generation of optical Schrödinger
kitten states.

This work represents an alternative pathway to exist-
ing methods for generating nonclassical states of light from
strong-field processes [24]. This emerging and promising di-
rection not only helps in further delineating the quantumness
of attosecond science [78], but also holds potential to provide
unprecedented tools for generating high-intensity nonclassical
states of light. These states can drive nonlinear processes in
matter [35] and advance the integration of attosecond science
with photonic-based quantum information science applica-
tions [25,78].
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APPENDIX A: DESCRIBING THE LIGHT-MATTER
INTERACTION FROM A SINGLE-ATOM PERSPECTIVE

We begin this analysis by writing the time-dependent
Schrödinger equation describing the interaction of an atomic
system with a quantized electromagnetic field. This is
done within the length gauge, and by working under the
single-active-electron and dipole approximations. In the
interaction picture with respect to the semiclassical light-
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matter interaction Hamiltonian Hsc(t ) = Ĥat + Ecl(t )d̂ (see,
e.g., Refs. [34,40] for details), this equation can be written
as

ih̄
∂|�(t )〉

∂t
= Ê (t )d̂ (t )|�(t )〉, (A1)

with d̂ (t ) the dipole moment operator in the corresponding
interaction picture and Ê (t ) the time-dependent electric field
operator, given by

Ê (t ) =
qc∑

q=1

Êq(t ) = −i f (t )
qc∑

q=1

g(ωq)[âe−iωqt − â†eiωqt ],

(A2)

where we discretize the electromagnetic field modes and ac-
count for the pulsed nature of the employed source by means
of an envelope function 0 � f (t ) � 1. While a fully rigorous
quantum optical analysis would typically require an infinite
number of modes to represent a continuous spectrum, we ap-
ply the envelope function f (t ) both to confine the interaction
to a finite time interval and to recover the classical-pulsed field
expressions. This approach yields results equivalent to those
obtained when using multimode descriptions of the driving
laser field [34,40], while preserving the simplicity of using
single-mode drivers.

The main difference between this work and
Refs. [34,40,42] is that we consider the initial state of
the system to be in a superposition of the form

|�(t0)〉 = [cg|g〉 + ce|e〉]
qc⊗

q=1

|0q〉, (A3)

that is, the atomic system is in a superposition of different en-
ergetic states, where cg and ce represent the initial probability
amplitudes associated with the ground and first excited states,
respectively. Here, we consider the initial electronic state to
be an arbitrary superposition of the ground and excited states,
unlike in the main text. At the end of this analysis, we impose
the initial condition cg = 0 and ce = 1, which yield Eqs. (4)
and (6) in the main text.

To solve the differential equation above, we introduce the
identity in the electronic subspace as

1 = |g〉〈g| + |e〉〈e| +
∑
n=2

|ψn〉〈ψn| +
∫

dψc|ψc〉〈ψc|,

(A4)

where the first two terms are projectors with respect to the
ground and first excited states of the atomic system, re-
spectively, which we assume nondegenerate. The third term
includes the projector onto all other bound states, and the last
term accounts for all continuum states. In the following anal-
ysis, we neglect the contribution of continuum states, as their

impact is small compared to that of the atomic lowest-energy
states for the field parameters we considered [42]. However,
it is important to highlight that these continuum states have
indeed been taken into account to compute the time-dependent
dipole moment matrix elements, as these are evaluated in the
original electronic frame of reference. Furthermore, contrary
to the standard strong-field approximation (SFA) assumptions
that disregard contributions from all bound states other than
the ground state [79], we include the contribution of the first
excited state. This inclusion is crucial, as the initial state of
the atom, as described in Eq. (A3), makes the contributions
from excited states significant in defining the properties of the
generated harmonic radiation [56,57].

Therefore, introducing Eq. (A4) into the Schrödinger equa-
tion (A1) and taking into account the simplifications above,
we arrive at the following set of coupled differential equa-
tions:

ih̄
∂|	g(t )〉

∂t
= μgg(t )Ê (t )|	g(t )〉 + μge(t )Ê (t )|	e(t )〉,

(A5)

ih̄
∂|	e(t )〉

∂t
= μeg(t )Ê (t )|	g(t )〉 + μee(t )Ê (t )|	e(t )〉,

(A6)

where |	i(t )〉≡〈i|�(t )〉 and μij(t )≡〈i|Û †
sc(t, t0)r̂Ûsc(t, t0)|j〉

are the time-dependent dipole moment matrix elements.
These matrix elements are computed following Refs. [56,57],
by combining numerical integration with saddle-point ap-
proaches. More specifically, three-dimensional (3D) in-
tegrals involving momentum variables are evaluated by
using the saddle-point approximation, while the time-
dependent integrals numerically using adaptive algorithms.
Different laser parameters are used compared to the afore-
mentioned references to make the forthcoming numerical
calculations less time-consuming. The absolute values of
these matrix elements are presented in Fig. 5, where it is
observed that |μee(t )| � |μeg| � |μgg(t )|, in agreement with
those of Ref. [37].

Given that μgg(t ) is perturbatively smaller compared to the
other two, we apply perturbation theory to |	g(t )〉

|	g(t )〉 = ∣∣	(0)
g (t )

〉 + ∞∑
n=1

∣∣	(n)
g (t )

〉
, (A7)

such that, when substituted in Eq. (A5), it yields the follow-
ing set of coupled differential equations for each perturbative
order:

ih̄
∂
∣∣	(0)

g (t )
〉

∂t
= μge(t )Ê (t )|	e(t )〉, (A8)

ih̄
∂
∣∣	(n)

g (t )
〉

∂t
= μgg(t )Ê (t )

∣∣	(n−1)
g (t )

〉 ∀n > 0, (A9)

whose solutions are straightforwardly given by

∣∣	(0)
g (t )

〉 = ∣∣	(0)
g (t0)

〉 − i

h̄

∫ t

t0

dτμge(τ )Ê (τ )|	e(τ )〉, (A10)

∣∣	(n)
g (t )

〉 = ∣∣	(n)
g (t0)

〉 − i

h̄

∫ t

t0

dτμgg(τ )Ê (τ )
∣∣	(n−1)

g (t )
〉
, ∀n > 0. (A11)
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FIG. 5. Behavior of the matrix elements of the time-dependent dipoles as a function of time. Here, we consider a field of amplitude
E0 = 0.053 a.u., ωL = 0.057 a.u., with a sin2-envelope and duration of six optical cycles. The target atom used in the analysis is He+, which
has ionization potentials Ip,g = 2 a.u. and Ip,e = 0.5 a.u. for the ground and first excited states, respectively. In the plots, some of the matrix
elements have been multiplied by a constant to properly observe their behavior.

We now substitute this solution into Eq. (A6). Given that |μeg(t )| can be treated as a perturbative quantity with respect
to |μee(t )|, we retain only the zeroth-order solution of Eq. (A7). Consequently, the resulting differential equation can be
approximately expressed as

ih̄
∂|	e(t )〉

∂t
≈ μee(t )Ê (t )|	e(t )〉 + μeg(t )Ê (t )

∣∣	(0)
g (t0)

〉 − i

h̄
μeg(t )Ê (t )

∫ t

t0

dτμge(τ )Ê (τ )|	e(τ )〉, (A12)

and, similarly to Ref. [42], we apply the Markov approximation, which allows us to express the equation above as

ih̄
∂|	e(t )〉

∂t
≈

[
μee(t )Ê (t ) − i

h̄
μeg(t )Ê (t )

∫ t

t0

dτμge(τ )Ê (τ )

]
|	e(t )〉 + μeg(t )Ê (t )

∣∣	(0)
g (t0)

〉
, (A13)

which is an inhomogeneous first-order differential equation with distinct homogeneous and inhomogeneous parts. A solution to
this equation can be expressed as the sum of a solution to the homogeneous part and a particular solution to the inhomogeneous
part. Therefore, we first focus on the homogeneous differential equation, which is given by

ih̄
∂|	(h)

e (t )〉
∂t

≈
[
μee(t )Ê (t ) − i

h̄
μeg(t )Ê (t )

∫ t

t0

dτμge(τ )Ê (τ )

]∣∣	(h)
e (t )

〉
, (A14)

and whose solution can be generally written, for small-enough values of �t , as

∣∣	(h)
e (t )

〉 = lim
N→∞

{
N∏

n=1

exp

[
− i

h̄
Ô(tn)�t

]}∣∣	(h)
e (t0)

〉
, (A15)

where we define Ô(t ) ≡ μee(t )Ê (t ) − Q̂(t ) and Q̂(t ) ≡ i
h̄μeg(t )Ê (t )

∫ t
t0

dτμge(τ )Ê (τ ). Our main objective is to express the expo-

nential operator as the product of two exponential operators, each incorporating the effects of μee(t )Ê (t ) and Q̂(t ), respectively.
This involves using the Baker-Campbell-Hausdorff (BCH) formula. To achieve this, we first evaluate the commutation between
these operators at different times.

We begin by evaluating the commutator [Ê (t ), Ê (t ′)]. Considering the definition of the electric field operator given in
Eq. (A2), and by using the commutation relation [âq, â†

q′ ] = δq,q′ , we can write

[Ê (t ), Ê (t ′)] = −i2 f (t ) f (t ′)
qc∑

q=1

sin[ωq(t − t ′)] ≡ i
qc∑

q=1

ϕq(t ′, t ), (A16)

which is essentially a complex constant that depends on g(ωq)2 multiplied by the identity. This expression can be used to evaluate
the commutator [Ê (t ), Q̂(t ′)], which can be expressed as

[Ê (t ), Q̂(t )] = i

h̄
μeg(t ′)

∫ t ′

t0

dτμge(τ )[Ê (t ), Ê (t ′)Ê (τ )], (A17)

with the commutator in the integrand satisfying

[Ê (t ), Ê (t ′)Ê (τ )] = Ê (t ′)[Ê (t ), Ê (τ )] + [Ê (t ), Ê (t ′)]Ê (τ )

= i
∑

q

[ϕq(t, τ )Ê (t ′) + ϕq(t, t ′)Ê (τ )] ∝ Ô[g3(ωq)]. (A18)
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Thus, if we restrict ourselves to cases where terms of order O[g(ωq)3] are negligible, we can approximate [Ê (t ), Q̂(t ′)] ∝
Ô[g3(ωq)] ≈ 0. Similarly, one can show that [Q̂(t ), Q̂(t ′)] ∝ Ô[g4(ωq)] ≈ 0. Consequently, using the BCH formula and incor-
porating these approximations, we can express Eq. (A15) as

Û (t, t0) ≈ lim
N→∞

{
N∏

n=1

exp

[
− i

h̄
μee(tn)�t

]
exp

[
− i

h̄
Q̂(tn)�t

]}

≈ eiϕ(t ) exp

[
− i

h̄

∫ t

t0

dτμee(τ )Ê (τ )

]
exp

[
− i

h̄

∫ t

t0

dτ Q̂(τ )

]
, (A19)

where we denote |	(h)
e (t )〉 = Û (t, t0)|	(h)

e (t0)〉. With this solution, we can then write the solution to the inhomogeneous equation

|	e(t )〉 = Û (t, t0)|	e(t0)〉 + i

h̄

∫ t

t0

dτÛ (t, τ )μeg(τ )Ê (τ )
∣∣	(0)

g (τ )
〉
, (A20)

and, similarly, we get for the zeroth-order term in Eq. (A10)

∣∣	(0)
g (t )

〉 = ∣∣	(0)
g (t0)

〉 − i

h̄

∫ t

t0

dτμge(τ )Ê (τ )Û (τ, t0)|	e(t0)〉+ 1

h̄2

∫ t

t0

dτ1μge(τ1)Ê (τ1)
∫ τ1

t0

dτ2Û (τ1, τ2)μeg(τ2)Ê (τ2)
∣∣	(0)

g (τ2)
〉

≈ ∣∣	(0)
g (t0)

〉− i

h̄

∫ t

t0

dτμge(τ )Ê (τ )Û (τ, t0)|	e(t0)〉+ 1

h̄2

∫ t

t0

dτ1μge(τ1)Ê (τ1)
∫ τ1

t0

dτ2Û (τ1, τ2)μeg(τ2)Ê (τ2)
∣∣	(0)

g (t0)
〉
,

(A21)

where in the last approximation we omit the contribution of
O[g3(ωq)] terms.

At this point, we can introduce the initial conditions,
which in our case are |	e(t0)〉 = ce|0̄〉, |	(0)

g (t0)〉 = cg|0̄〉,
and |	(n)

g (t0)〉 = 0. More specifically, in the main text we are
interested in the regime where all the population is initially in
the excited state, i.e., ce = 1 and cg = 0. From this, we can
write

|	e(t )〉 ≈ Û (t, t0)|0̄〉 + 1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2Û (t, τ1)

× μeg(τ1)Ê (τ1)μge(τ2)Ê (τ2)Û (τ2, t0)|0̄〉, (A22)

∣∣	(0)
g (t )

〉 ≈ − i

h̄

∫ t

t0

dτμge(τ )Ê (τ )Û (τ, t0)|0̄〉. (A23)

As seen in Eq. (A22), squeezing features are most pro-
nounced when the electron ends in the (dressed) excited
state. In contrast, outcomes where the electron is found in
the (dressed) ground state produce delocalized single-photon
excitations across the various harmonic modes. This quantum
optical state closely resembles those in Ref. [59], particu-
larly when focusing on events where the electron ends in
the antibonding (first excited) state. This configuration shows
significant entanglement and other nonclassical properties,
making further analysis of Eq. (A23) redundant for this work;
interested readers are directed to the reference above.

Similarly, if we consider initial conditions where cg = 1
and ce = 0, while restricting to scenarios where the electron
ultimately occupies the first excited state, we derive

|	e(t )〉 ≈ i

h̄

∫ t

t0

dτÛ (t, τ )μeg(τ )Ê (τ )|0̄〉, (A24)

which suggests the presence of squeezed single-photon exci-
tations across harmonic modes. However, these features are
minimal in the single-atom regime and would remain so in

the many-atom scenario, as can be seen by following a similar
analysis to that in Ref. [59], equivalent to the one presented in
the next section.

APPENDIX B: LABORATORY FRAME AND A
MANY-ATOM CONSIDERATIONS

The analysis we presented thus far has been conducted in
the semiclassical framework, specifically in the interaction
picture with respect to Ĥsc(t ). Within this framework, we
derived the following solution to the Schrödinger equation:

|�(t )〉 ≈ |e〉 ⊗ |	e(t )〉 + |g〉 ⊗ ∣∣	(0)
g (t )

〉
, (B1)

where |	e(t )〉 and |	(0)
g (t )〉 are given in Eqs. (A22) and (A23),

respectively.
Given that the relation between the laboratory frame and

the semiclassical picture considered here is given by |�̄(t )〉 =
Ûsc(t )|�(t )〉, we can express the state in the electronic labora-
tory frame as follows:

|�̄(t )〉 = (Ûsc(t )|e〉) ⊗ |	e(t )〉 + (Ûsc(t )|g〉) ⊗ |	g(t )〉,
(B2)

and under the strong-field approximation [56,57], we can
write

Ûsc(t )|e〉 = e−iIp,et/h̄|e〉 +
∫

dc bc(t )|φc〉, (B3)

Ûsc(t )|g〉 = e−iIp,gt/h̄|g〉, (B4)

where {|φc〉} denotes the set of continuum states, and Ip,g

and Ip,e denote the ionization potential for ground and first
excited states, respectively. Among all possible events, we are
particularly interested in those where the electron returns to its
initial state, i.e., the excited state. Consequently, considering
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those, we find for the quantum optical state

|	̄e(t )〉 = 〈e|�̄(t )〉

≈
[
Û (t, t0) + 1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2Û (t, τ1)

× μeg(τ1)Ê (τ1)μge(τ2)Ê (τ2)Û (τ2, t0)

]
|0〉

≡ Û (t )|0〉, (B5)

corresponding to the superposition of a displaced squeezed
vacuum state, a photon-added displaced squeezed vacuum
state, and a photon-subtracted displaced squeezed vacuum
state.

However, all the analysis presented thus far was conducted
at the single-atom level. Consequently, given the weak cou-
pling between light and matter, the nonclassical features we
could potentially observe in our state are minimal. Never-
theless, in typical HHG setups, many atoms independently
couple to the same electromagnetic field. In this scenario,
and within the semiclassical interaction picture, the time-
dependent Hamiltonian describing the system’s dynamics is
given by

Ĥ (t ) =
Nat∑
i=1

Ê (t )d̂i(t ), (B6)

where d̂i(t ) is the time-dependent dipole moment operator of
the ith atom, with Nat the total number of atoms. It is important
to note that this Hamiltonian is not local, as all the atoms
couple independently to the same electromagnetic field. This
ultimately leads to coupled dynamics, and, in general, we have
that

[Ê (t )ri(t ), Ê (t ′)r j (t
′)] = r̂i(t )r̂ j (t )[Ê (t ), Ê (t ′)]

= ir̂i(t )r̂ j (t )
∑

q

ϕq(t ) �= 0, (B7)

where we take into account that [r̂i(t ), r̂ j (t )] = 0 ∀i �= j.
Formally, this means that to solve the many-body prob-

lem, we must consider the contributions from all atoms.
However, if we assume that, on average, the time-dependent
dipole moments of different atoms are uncorrelated [66], i.e.,
〈r̂i(t )r̂ j (t ′)〉 = 0, the contributions in Eq. (B7) average to
zero. More specifically, considering for simplicity a single
harmonic mode q, we obtain∫

dt
∫

dt ′〈[Êq(t )ri(t ), Êq(t ′)r j (t
′)]〉

= i
∫

dt
∫

dt ′〈r̂i(t )r̂ j (t
′)〉 sin[ωq(t − t ′)]

= 1

2

∫
dt

∫
dt ′〈r̂i(t )〉〈r̂ j (t

′)〉[eiωq (t−t ′ ) − e−iωq (t−t ′ )]

= 1

2

[∣∣∣∣
∫

dt〈r̂i(t )〉eiωqt

∣∣∣∣
2

−
∣∣∣∣
∫

dt〈r̂i(t )〉eiωqt

∣∣∣∣
2]

= 0,

(B8)

where we assume that 〈r̂i(t )〉 = 〈r̂ j (t )〉 ∀i, j, which is valid
under the dipole approximation and when all atoms are of

the same species. Thus, Eq. (B8) implies that the average
correlations vanish. Given that the coupling of each atom with
the field is weak, it is then expected that the influence of each
individual atom on the field is weak enough for the interaction
to be considered independent. Consequently, if we assume
that all atoms are initially in the same state, the many-body
evolution can be expressed as

|�̄(t )〉 = ˆ̄U(t )
Nat⊗
i=1

|e〉 ⊗ |0̄〉 ≈
Nat∏
i=1

Û(t )
Nat⊗
i=1

|e〉 ⊗ |0̄〉, (B9)

and focusing on those cases where the electron ends up in the
excited state, we obtain in the laboratory frame

|	̄e(t )〉 ≈ [Û (t )]Nat |0̄〉. (B10)

APPENDIX C: DETAILS ABOUT THE SINGLE-MODE
SQUEEZING ANALYSIS

Provided the state in Eq. (B10), we want to characterize
the amount of squeezing. In principle, such states involve
correlations between all possible modes, but for the moment
we are going to consider the squeezing terms affecting single
modes. In other words, we will neglect, for simplicity, the
two-mode squeezing contributions of Q̂ and keep only the
diagonal ones, i.e.,

Q̂q,q = i

h̄
μeg(t )Êq(t )

∫ t

t0

dτμge(τ )Êq′ (τ ), (C1)

such that we approximate Eq. (B10) as

|	̄(t )〉 ≈ D̂
(
χ̄
)

exp

[
−

qc∑
q=1

iNat

h̄

∫ t

t0

dτ Q̂q,q(τ )

]
|0̄〉, (C2)

where we define D̂(χ) ≡ ∏qc
q=1 D̂q(χq) with D̂(·) representing

the displacement operator and Q̂q,q(t ) ≡ i
h̄μeg(t )Êq(t )

∫ t
t0

dτ

μge(τ )Êq(τ ), which involves second-order terms of creation
and annihilation operators. In this expression, χ̄ ≡ f [χe(t )],
where f (·) is a function that depends on the prefactors accom-
panying the product of the creation and annihilation operators
in Q̂q,q. This can be observed from the fact that we can always
write [ f (â2, â†â), g(â)] = h(â), with f (·), g(·) and h(·) being
linear functions of the corresponding operators. Therefore,
exp[− f (â2, â†â)] exp[g(â)] exp[ f (â2, â†â)] = exp[h̃(â)],
where h̃(·) does not necessarily have to be equal to h(·), but
still is a linear function of creation and annihilation operators.

To quantify the amount of squeezing present in each
harmonic mode of our state, we estimate the value of the
squeezing parameter r by solving the following optimization
problem

�Xq(θ∗) = min
θ

[�Xq(θ )], (C3)

where X̂ (θ ) is a phase-dependent photonic quadrature defined
as

X̂q(θ ) ≡ X̂q cos(θ ) + ˆ̄Xq sin(θ ), (C4)

with X̂q = (âq + â†
q)/

√
2 and ˆ̄Xq = (â†

q − â†
q)/(i

√
2). Thus,

the optimization problem in Eq. (C3) allows us to find a direc-
tion in phase space along which the corresponding distribution
gets squeezed.
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Such optimization has been implemented numerically in
PYTHON by combining a brute force search with built-in func-
tions from the QUTIP package [80,81]. First, the prefactors
to the set of operators {â2

q, âqâ†
q, â†

qâq, â†2
q } were computed

through numerical integration using the QUAD function of the
SCIPY package [82], with the integration parameters suitably
adjusted to achieve convergence. Specifically, an upper bound
of 1000 subintervals was employed in the adaptive algorithm.

These prefactors were sequentially used to construct the
single-mode-squeezing-like operator in Eq. (C2) by com-
bining built-in functions in QUTIP for defining creation and
annihilation operators, with linear algebra functions of SCIPY

that allow the exponentiation of matrices. Given that QUTIP

expresses quantum optical states and operators in the Fock
basis, which is inherently infinite dimensional, it is important
to select a sufficiently high cutoff dimension for the Fock basis
to ensure accurate representation of quantum states, while not
exceeding the memory capabilities of the employed hardware.
For the parameter regime we worked with, we found that
ncutoff = 50 was sufficient to achieve this balance, although
convergence tests were performed with ncutoff = 200. These
conditions were used for evaluating the optimization problem
in Eq. (C3), which was addressed through brute-force search.
This method is particularly useful here, as we have a single
parameter θ ∈ [0, π ]. Consequently, we generated an array
composed of 100 elements linearly distributed within this
interval and proceed to sequentially evaluate Eq. (C3) for each
harmonic mode individually.

APPENDIX D: DETAILS ABOUT THE TWO-MODE
SQUEEZING ANALYSIS

In the analysis of Appendix C, we purposely omitted the
contribution of correlations between different field modes. In
other words, we neglected cross terms of the form âqâ†

q′ with
q �= q′. However, these correlations are present and must be
characterized. The main challenge here is that the number
of harmonic modes in this problem is large, making it nu-
merically daunting to characterize all modes simultaneously.
Consequently, we restrict our analysis to two-mode squeezing
contributions affecting only modes q1 and q2. As observed in
Fig. 3, this approximation is particularly valid as, among all
the modes involved, the correlations are specially significant
between modes q = 1 and 3, while for the others they are
almost negligible.

Provided that the states we are dealing with are Gaussian
states, their properties are fully determined by their covariance
matrix σq1,q2 , defined as in Eq. (14). For simplicity, in the
numerical calculations of this matrix we omit the contribution
of the displacement operator appearing in Eq. (13). This omis-
sion is justified because such displacement operators do not
affect the correlation properties of the covariance matrix; their
influence can be easily removed by means of local unitary
transformations [68,83].

One of the most interesting aspects about Gaussian states
is that the PPT or Peres-Horodecki criterion is a necessary and
sufficient condition for separability for all bipartite Gaussian
states [71]. Thus, the logarithmic negativity is an ideal en-
tanglement measure to characterize the entanglement in these

states. This quantity can be computed as [68]

EN (ρ̂) = max{0,− log2(2ν̃−)}, (D1)

where ν̃− is the smallest of the two symplectic eigenvalues
of the partial transpose of our covariance matrix. For the case
of Gaussian states, the partial transpose can be computed as
σ̃ = �σ� with � = diag(1, 1, 1,−1) [71]. The symplectic
eigenvalues of σ̃ are then computed as the eigenvalues of
the matrix |i�σ | with � = ⊕n

i=1 � with � = ( 0 1
−1 0) [72].

However, when considering matrices of the form of Eq. (14),
ν̃− can also be computed as [72]

ν̃− =
√

�(σ̃ ) −
√

�(σ̃ )2 − 4 det(σ )

2
, (D2)

with �(σ̃ ) = det(A) + det(B) − 2 det(C), with det(·) denot-
ing the determinant operation.

Similar to Appendix C, the prefactors of the operators
{â2

qi
, â†2

qi
, âqi â

†
qi
, â†

qi
âqi , âqi â

†
q j

, â†
qi

âq j } were numerically com-
puted using the QUAD function of SCIPY. Then, the two-mode
squeezing operator and the corresponding covariance matrix
were computed by combining built-in QUTIP functions with
linear algebra functions of SCIPY. For both the q1 and q2

modes, the upper bound used for their respective Hilbert space
dimension was set to ncutoff = 50, leading to a joint Hilbert
space dimension of 2500. Under these conditions, we obtain
the Wigner functions in Fig. 6 for different combinations of
(q1, q2).

The Wigner functions in Fig. 6 correspond to those of
Fig. 4 prior to the performance of the heralding operation.
That such heralding operations can lead to other kinds of
nonclassical states of light becomes evident when expand-
ing the two-mode-squeezing-like operator in Eq. (13) in a
polynomial series. By denoting, for instance, the prefactor of
the operator â2

qi
as g(â2

qi
), and by considering only first-order

terms while omitting the effect of the displacement operator,
we can express our state as (up to normalization factors)

|	̄e(t )〉 ≈ |0̄〉 +
2∑

i, j=1

[g(âqi âqi )âqi âq j + g(â†
qi

â†
qi

)â†
qi

â†
q j

+ g(â†
qi

âqi )â
†
qi

âq j + g(âqi â
†
qi

)âqi â
†
q j

]|0̄〉

= |0̄〉 +
2∑

i, j=1

g(â†
qi

â†
q j

)â†
qi

â†
q j

|0̄〉, (D3)

which, after performing the heralding operation, for instance
in the second mode, leads to

ρ̂q1 = trq2 (�̂q2 |	̄e(t )〉〈	̄e(t )|)
= ∣∣g(â†2

q2

)∣∣2|0〉〈0| + ∣∣g(â†
q1

â†
q2

)∣∣2|1〉〈1|, (D4)

with the obtained nonclassical features strongly dependent on
the ratio between the single-mode squeezing found in mode
q2 [|g(â†2

q2
)|2], and the strength of the correlations between q1

and q2 [|g(â†
q1

â†
q2

)|2]. As observed in Fig. 1, the single-mode
squeezing properties of our state decrease for higher-harmonic
orders, as well as the correlations between the modes, al-
though with different scaling as observed in Fig. 3.
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FIG. 6. Wigner functions for the two-mode squeezing involving modes q1 and q2. The amount of squeezing found, in dB units, is (a1)
6.71 × 10−2, (a2) 8.46 × 10−3, (b1) 6.71 × 10−2, (b2) 4.63 × 10−14, (c1) 8.46 × 10−3, and (c2) 5.98 × 10−14.

Thus, when performing the heralding on q2 > q1 (first row
of Fig. 4), it leads to higher nonclassical features because the
single-mode squeezing properties in these higher-order modes
are almost vanishing. On the contrary, when performing the

heralding in mode q1 with q2 > q1 (second row of Fig. 4),
the single-mode squeezing properties are dominant, and there-
fore, the presence of nonclassical features become more
diluted [Fig. 4(a2)], if existing at all [Figs. 4(b2) and 4(c2)].
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