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Tunnelling is an iconic concept that captures the peculiarity of quantum dynamics, but despite
its ubiquity questions remain. We focus on strong-field tunneling, which is vital to all attosecond
science. We find an unexpected optical tunnelling event that happens when the instantaneous
electric field vanishes and there is no barrier. This event arises from a colour switchover in a
strongly polychromatic field. The tunnelling without a barrier reveals the disconnect between the
standard intuition built on the picture of a quasi-static barrier, and the nonadiabatic nature of
the process.
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I. INTRODUCTION

The quantum-mechanical tunnel effect is an emblematic
example of the peculiar behaviour of quantum particles,
which can ‘tunnel’ through potential-energy barriers that
classical physics deems impassable. Although the discovery
of tunnelling dates back almost a century [1], there are still
many open questions, such as how to experimentally mea-
sure the time the particle spends under the barrier [2–8],
tunnelling in composite systems [9–12] and the dynamics
inside the barrier [13, 14].
In nonlinear optics, tunnelling appears in the context of

strong-field physics, in which the illuminating laser field
is strong enough to distort an atom’s Coulomb potential.
The created barrier allows the electron to escape from the
atom [15] (see Fig. 1(a)). In this work, we present such
a strong-field ionisation event for an atom subjected to a
bichromatic laser field, and report on a nonadiabatic tun-
nelling event which, counter-intuitively, happens at a time
when the instantaneous electric field is zero (see Fig. 1(b)).
Ionisation by strong laser pulses is fundamental for the

whole area of attosecond science. After tunnel ionisation,
the electron may be detected directly (known as above-
threshold ionisation [16, 17], ATI), or it may recombine
with its parent ion to emit a short burst of radiation
(high-harmonic generation [18, 19], HHG). Both processes
provide information on atomic dynamics on its natural
timescale [20], and they both initiated by the tunnel step
of strong-field ionisation.
This interaction of intense laser pulses with matter is

most commonly described using the strong-field approxi-
mation (SFA) [17, 21]. Following the works of Keldysh,
Faisal and Reiss [22–24], and Peremelov et al. [25], the
ionisation yield in such an oscillating but low-frequency
field is derived from the tunnelling rate in a static electric
field, and hence, a static barrier. Ionisation can then be
described in terms of discrete events which occur when the
field is at its maximum.
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FIG. 1. Sketch of field-induced tunnelling, with the laser field,
the atomic binding potential and the resulting barrier in the (a)
quasi-static approach, and (b) nonadiabatic regime in which the
laser field changes during the process.

In recent years, advances in light generation and mea-
surement techniques allow (and ask) for a more detailed
description of the strong-field ionisation process. Numer-
ous studies focus on the nonadiabaticity of the tunnelling
phenomenon, taking into account the dynamics of the bar-
rier [26–30], e.g. in the so-called ‘attoclock’ setup [31–37],
as well as the effects of the Coulomb potential [38, 39].

One of the key tools to investigate nonadiabatic effects
are tightly controlled ‘tailored’ polychromatic drivers. For
example, the perturbative addition of fields with new fre-
quencies is often used as a temporal gate for the ionisa-
tion process and to control the harmonic signal [40–46]. In
the past few years, strongly polychromatic drivers, where
the two fields are combined with similar amplitudes, have
become experimentally feasible and indispensable in at-
tosecond science. They allow for versatile shaping of the
harmonic radiation both in intensity and polarisation, and
thus offer control over the main features of the emitted at-
tosecond pulses [47–57]. Generic polychromatic drivers are
therefore necessary to build a comprehensive understand-
ing of strong-field processes, starting from their first step –
tunnelling.

In this Article we present a tunnel ionisation event that
happens in a two-colour strong-field setup at a time when
the instantaneous electric field is zero, and hence there is
no barrier created. This counter-intuitive finding arises
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within the quantum-orbit picture of the SFA [58] as a
generic and topological feature of the colour switchover,
which describes the continuous tuning from a monochro-
matic driving laser field to its second harmonic. We suggest
this scheme as a simple and essential technique for under-
standing strong-field physics with strongly polychromatic
drivers.

II. THEORETICAL METHODS

The ionisation amplitude Ψ(p) for a given final (drift)
momentum p can be described by the SFA integral, as
shown in [59] and in Appendix A. In the quantum-orbit
picture, we employ the saddle-point method (SPM) [60, 61]
to reduce the integral to a summation of contributions at
the saddle points of the semi-classical action [62, 63]

S(p, t) =

∫ t

−∞

[
Ip +

1

2
(p+A(t′))

2
]
dt′ . (1)

Here, Ip is the atomic ionisation potential, the
laser is linearly polarised, and its vector potential is
A(t) = −

∫
E(t) dt. (We use atomic units unless other-

wise noted.) The saddle points ts are determined by

∂S(p, t)

∂t

∣∣∣∣
t=ts

= 0 , (2)

they are in general complex numbers, correspond to the
discrete ionisation events at field maxima from the quasi-
static approximation, and ultimately form a Feynman path
integral [64] for the ionisation amplitude. The total ionisa-
tion amplitude within one laser cycle can then be written as

Ψ(p) ≈ ΨSPM(p) =
∑
s

Ψs
SPM(p), (3)

where Ψs
SPM(p) is the ionisation amplitude corresponding

to the saddle point ts. The procedures we describe here
have been implemented in Mathematica and are available
from [65].

III. THE COLOUR SWITCHOVER

We use the saddle-point method to find ionisation events
in the colour-switchover scenario. We consider a linearly
polarised laser field which is gradually replaced by its sec-
ond harmonic, such that the resulting electric field can be
understood as a two-colour field where we tune the ampli-
tude ratio between the ω and the 2ω components, while
keeping the total intensity I0 = E2

0 constant. That is, the
total electric field is given by

E(t) = E1 cos(ωt)− E2 cos(2ωt) (4)

with the amplitudes E1 = E0 cos θ and E2 = E0 sin θ defin-
ing the mixing angle 0◦ ≤ θ ≤ 90◦, which corresponds to

A B C D

FIG. 2. Left column (a-f): Total waveform of the bichromatic
field (4) (black solid line) and of its components (ω field: red
dashed, 2ω field: blue dotted) for the colour switchover per-
formed by increasing the mixing angle θ from 8◦, through 15◦,
θco ≈ 19◦, 25◦, θ⋆ = 45◦ and 80◦, respectively. The green arrow
in panel (e) points at the time when the combined electric field is
zero. Right column (g-l): Im(S(p, t)) over the complex ωt plane
for the fields presented on the left. We use I0 = 4×1014 W/cm2,
ω = 0.057 a.u. (so λ = 800 nm), Ip = 0.5 a.u., such that
γ = 0.67, and p = 0. Saddle points ωts are highlighted by
coloured dots and can be labelled as shown in panel (l). Their
contour lines for constant Re(S(p, t)) are drawn as grey lines,
with the resulting integration contour in black.

changing the amplitude ratio R = E2/E1 = tan(θ) between
0 and infinity.

The colour-switchover scenario, shown in Fig. 2, is of
special interest because it demonstrates how the num-
ber of discrete ionisation events changes as we move from
a perturbative second colour to a strongly-polychromatic
regime. Clearly, for the ω-dominated field there are two
ionisation events per cycle of the fundamental, namely at
ωt = 0 and π in panel (a), whereas for the 2ω-dominated
field there are four ionisation events per cycle, at ωt =
−π/2, 0, π/2 and π in panel (f). By examining the contour
maps of the imaginary part of the action over complex
time (panels (g-l) for the fields in (a-f)), we show that this
change in number of contributing saddle points happens
surprisingly early within the colour switchover.

In the contour maps we highlight the saddle points ts
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(coloured dots), their respective level lines (grey solid lines)
and the resulting steepest-descent integration path (black
solid line) that defines which saddle points contribute to
the ionisation amplitude (3) (namely those which are part
of the integration path). In the early stage of the colour
switchover the integration contour only passes through two
saddle points, which we call A (red) and D (yellow). The
two additional ‘new’ saddle points B (green) and C (blue)
come in from high imaginary parts (Fig. 2(g,h)), and only
start contributing after the coalescence of C and A to one
second-order saddle point (black dot in panel (i)), which
happens at θ = θco. For the rest of the switchover, i.e., for
θ > θco (panels (j-l)), all four saddle points are part of the
integration path and hence, must be taken into account
when calculating the ionisation amplitude.
Let us focus on the saddle point B , for which

Re(ωts) = 0. We find that this saddle point represents a
contributing ionisation event even before the electric field
has changed sign (E(0) > 0, as in Fig. 2(d)) and therefore
implies tunnelling uphill. More importantly however, and
as advertised, this tunnel ionisation event also contributes
to the total ionisation amplitude at θ⋆ = 45◦ (Fig. 2(k),
saddle point B at ωts ≈ 0 + 1.1 i), when the electric field
is zero (E(0) = 0, green arrow in Fig. 2(e)) and there is in
fact no barrier formed.
This finding is deeply surprising when thinking of strong-

field ionisation in terms of the well-established quasi-static
intuition [22–25]. One possible explanation is to account
for the nonadiabaticity of the process using the complex-
time model explained in [62]. Therein the complex-valued
saddle point ts marks the moment the electron enters the
barrier, Im(ts) is understood as the time it spends under
the barrier, and Re(ts) is the moment it appears in the
continuum (read: exits the barrier). As, in our case, the
electric field is non-zero during that tunnelling time, i.e.,
for the time between ts and Re(ts), one could argue that
there is a barrier formed which allows the electron to tun-
nel. However, the dynamics in complex-valued time are far
from unambiguous.
It is worth emphasizing that the tunnel-ionisation dy-

namics hold in essentially identical form regardless of the
value of the drift momentum p, and the only special feature
at p = 0 is the exact saddle-point coalescence of Fig. 2(i).
In particular, for any given p we can always find an ioni-
sation event happening at a time when the electric field is
zero.

IV. ELECTRON TRAJECTORIES

To further expand on the intuitive understanding of the
ionisation events, we show the electron’s trajectory in the
electric field, given by

x(t) =

∫ t

ts

(p+A(t′)) dt′ . (5)

The temporal integration here follows a two-legged con-
tour in the complex plane [62, 66, 67], starting from the
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FIG. 3. Semi-classical trajectories (5) for the field with the
four labelled ionisation events shown in Fig. 2(e) and (k) re-
spectively. The semi-transparent bands show the trajectories
for solutions with small drift momentum, |p| < 0.05 a.u.

complex-valued saddle point t = ts downwards to the real
axis, and then from t = Re(ts) along the real axis. In
Fig. 3 we show the resulting semi-classical trajectories for
all four ionisation events shown in Fig. 2(k). In general,
the position at the tunnel exit xexit = Re

[
x(Re(ts))

]
is

non-zero for all trajectories. Upon their appearance in the
continuum, trajectories A, B and C are driven away from
the core, return, and then remain in the core’s vicinity for
a significant fraction of the cycle (around ωt ≈ 2π).

These trajectories are therefore highly susceptible to
Coulomb effects, which would weaken their contribution
to the measurable ionisation yield. However, the ionisa-
tion event at zero field is a stable feature of the colour
switchover and remains even for a wide range of phase
shifts between the two constituent fields. It is therefore
possible to adjust the colour-switchover configuration to
produce zero-field tunnelling events at nonzero momenta
whose trajectories spend less time around the core and
for which Coulomb forces are minimised. Independently of
Coulomb-effect considerations, the appearance of zero-field
tunnelling events within the SFA framework is interesting
in its own right.

V. CONTRIBUTIONS TO THE TOTAL
IONISATION AMPLITUDE

Let us now turn to the contribution of each ionisation
event to the total ionisation amplitude (3), where we are
especially interested in the contribution of the zero-field
ionisation event B . Hence, in Fig. 4(a) we show the spec-
trum |ΨSPM(p)| (black) for the field shown in Fig. 2(e),
with the contributions of each ionisation event. We find
that the contribution of our peculiar ionisation event is
small compared to that of A and C , and particularly D . In
fact, for the majority of the colour switchover (field shapes
as in Figs. 2(c-f)) the spectrum is clearly dominated by
the contribution of D , such that the contribution of orbit
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FIG. 4. (a) Magnitude of the spectral ionisation amplitude
|ΨSPM(p)| (black), and the contribution |Ψs

SPM(p)| of each of
the four ionisation events shown in Fig. 2(k). For p = 0, the
contribution B (green) stems from the ionisation event at zero
field. (b) Scaling of the total ionisation probability per orbit,
Ys, for a field shaped like the one shown in Fig. 2(e), for a range

of Keldysh parameters γ = 4ω
√

Ip/5I0, as a function of ω for
constant Ip and I0, over the wavelength range 330 nm ≤ λ ≤
3000 nm. The configuration used for Fig. 2, Fig. 3 and panel
(a) yields γ = 0.67 (grey vertical line). Note that the total
contributions (6) of A and C are equal.

B is hidden below the others and does not have an im-
mediately observable effect. This becomes obvious when
we recall that the ionisation for orbit D happens when the
field amplitude is largest (around ωt ≈ π), and that the
instantaneous electric field enters exponentially into the
ionisation amplitude via the action (1).
Because the theoretical SFA framework is tightly linked

to, and is often benchmarked against, the assumption of
a quasi-static barrier, we explore how the relevance of the
zero-field tunnelling event changes as we approach the adi-
abatic limit. Firstly, it is essential to mention that the
instantaneous electric field is zero at t = 0 for amplitude
ratio R = 1, and hosts a contributing saddle point there,
independently of the Keldysh parameter (apart from the
static limit case of γ = 0) as shown in Appendix B. Build-
ing on that, in Fig. 4(b) we present each orbit’s total con-
tribution to the spectrum,

Ys =

∫
|Ψs

SPM(p)|2 dp , (6)

for various Keldysh adiabaticity parameters γ =
√

Ip/2Up

and the ponderomotive energy , with Up the ponderomo-
tive energy. From the quasi-static limit (γ ≪ 1) to the
multi-photon ionisation regime (γ > 1), orbit D domi-
nates the spectrum, followed by equal contributions by A
and C , all of which show little variation across the range
of Keldysh parameters. In contrast, we find that the con-
tribution of orbit B decreases as we approach the quasi-
static regime. This means that the tunnelling event at
zero field loses significance for the total spectrum as we
move towards the adiabatic limit, reassuringly reconciling
our results with the quasi-static intuition. Nevertheless,
we emphasise that the experimentally-relevant parameters
used above result in γ = 0.67. Thus, within the realms of
typical configurations like ours, the contribution of orbit B
must not be ignored. Here it is worth remarking that the
colour switchover can also be performed between ω and
3ω. That produces a symmetric time dependence of the
field without the large maximum at ωt ≈ π, and narrows
the dynamics down to only orbits A, B and C .

VI. OUTLOOK AND CONCLUSIONS

Looking forward, the counter-intuitive nature of the tun-
nelling without a barrier makes it highly desirable to work
towards experimental realisation of this phenomenon and,
as a prerequisite, to identify an observable for which the
tunnel ionisation event at zero field produces detectable
signatures. Then, naturally, we aim for a comparison
both with numerical simulations of the time-dependent
Schrödinger equation (TDSE) and with experimental data.
TDSE simulations of this configuration, in particular,
should be able to clarify to what extent the effects of the
Coulomb potential, as well as the possibility of rescatter-
ing, play a role in the contribution of zero-field tunnelling
events to observable signatures. Those observable signa-
tures could be drawn, for example, from two-dimensional
holographic interference patterns in photoelectron momen-
tum spectra.

Lastly, performing a colour switchover in the context
of HHG instead of ATI promises to show similar features
to the ones described here, but it also offers the possibil-
ity to emphasise the role of the zero-field tunnelling event
through the use of spatial interference and macroscopic
phase-matching effects.

In conclusion, here we present strong-field tunnel ionisa-
tion events in the colour switchover from a laser field to its
second harmonic. This scheme generically covers all pos-
sible two-colour fields (4), for which the ionisation process
is well described by our SFA framework, and is intuitively
understood within quasi-static assumptions. In the case of
equal-amplitude mixing of the two constituent fields (as in
Fig. 2(e)), we find a nonadiabatic tunnel ionisation event
that happens at a time when the instantaneous electric
field is zero, and hence there is no barrier, thereby challeng-
ing that intuitive picture of the process. The existence of
the event is a topological feature of the two-colour field (4)
at equal amplitudes, and has a non-zero contribution to
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the total spectrum from the quasi-static limit through the
multiphoton regime. We find that the event has a relatively
small contribution to the spectral ionisation amplitude, but
we expect it to play a detectable role in the heterodyne
diffraction patterns of the photoelectron momentum dis-
tributions and to initiate contributing trajectories for the
generation of high-order harmonics. These questions thus
invite the search for an observable that provides experi-
mentally measurable signatures of the tunnelling at zero
field.
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Appendix A: Ionisation Amplitude

We consider ATI within the SFA framework. The ion-
isation amplitude for a given final (drift) momentum p is
therein described by the integral [59]

Ψ(p) =

∫ ∞

−∞
P (p+A(t)) e−iS(p,t) dt (A1)

where S(p, t) is the semi-classical action as shown in the
main text of this Article, P(k) = i

(
Ip + k2

/2
)
φ0(k) is a

slowly-varying prefactor, Ip is the ionisation potential, and
φ0 is the momentum representation of the ground-state
wavefunction. For atomic targets we assume a short-range

potential such that P(k) = i/
√
π (2Ip)

1
4 . Applying the

saddle-point method (SPM) to the SFA integral (A1) re-
sults in a summation over discrete ionisation events ts:

ΨSPM(p) ≈
∑
s

Ψs
SPM(p)

=
∑
s

√
2π

iS′′ P (p+A(ts)) e
−iS(p,ts) , (A2)

where the S′′ is the second derivative of the action eval-
uated at the saddle point ts. An often neglected step of
applying the saddle-point method (also called method of
steepest descents) is that the summation does not include
all saddle points ts of the action, but only those which are
part of a valid integration path [61]. In fact, there typi-
cally exist numerous solutions to the saddle-point equation
2, from which we need to select the ones which are con-
tained in the steepest-descent route. For the considered
colour-switchover scenario, those steepest-descent integra-
tion contours are shown in Fig. 1 (g-l) of the main text.

Appendix B: Scaling of the saddle-point coalescence

Strictly speaking, whenever two saddle points coalesce,
or are in close proximity, the saddle-point method breaks

down. Approximating the SFA integral then requires
higher-order methods, such as uniform expansions [61],
which for our case are complicated by the presence of the
third saddle point B . A more detailed exploration follows
in an upcoming publication. Regardless of that, the coa-
lescence point R = Rco indubitably marks the point from
which on the ‘new’ saddle points B and C (B eventually
corresponding to the ionisation event at zero field) enter
the integration contour. That is, for a given configuration,
the saddle point B (as well as C ) needs to be taken into
account for all amplitude ratios R > Rco.
As mentioned in the main text, the electric field is zero

for equal constituent field amplitudes (R = 1) indepen-
dently of the Keldysh parameter. To verify that the tun-
nelling event without a barrier remains a contributor to the
total ionisation amplitude for a change of driving laser field
parameters we need to show that saddle point B is already
part of the integration contour at R = 1, even if the wave-
length changes. In Fig. 5 we therefore show that the coa-
lescence amplitude ratio Rco decreases monotonically with
the Keldysh parameter (solid line). The dependence can be

well approximated by the asymptotes 1− 3
√

135/32 γ
3
2 in the

small-wavelength limit and by 1/4γ in the long-wavelength
limit (dashed and dotted lines respectively). Most impor-
tantly, Fig. 5 shows that Rco < 1 for all γ > 0 (shaded
region), and the saddle point B at the equal-amplitudes
line R = 1 is always part of the integration contour. We
hence conclude that the ionisation event at zero field is
a topologically stable feature of the strongly bichromatic
driving field.

FIG. 5. Scaling of the amplitude ratio Rco at which the saddle-
point coalescence happens, over a range of Keldysh parameters
γ. The shaded region shows the parameters for which saddles
B and C contribute to the integration contour. In dashed lines,
asymptotes for the behaviour in the γ ≪ 1 and γ > 1 regime are
shown. The grey line marks the configuration used in Fig. 2 of
the main text, for which γ = 0.67 and the coalescence happens
at Rco ≈ 0.36, corresponding to θco ≈ 19◦.
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