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Strong-field approximation in a rotating frame: High-order harmonic emission from p states in
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High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly
polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating
circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities:
a slight one in helium and a larger one in neon and argon, where the emission is carried out by p-shell electrons.
Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this
induces an effective magnetic field which lowers the ionization potential of the p+ orbital that corotates with the
lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics,
while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In
addition, this analysis directly relates the small asymmetry produced by s-shell emission to the imaginary part
of the recollision velocity in the standard strong-field-approximation formalism.
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I. INTRODUCTION

Light is one of our main tools for the investigation of
the internal structure and dynamics of matter, and in this
role we employ all of its characteristics: its spatial and
temporal aspects, its coherence as a wave phenomenon, and
its polarization as a vector effect. As we probe deeper into
the structures of materials and molecules, and as we look with
increasing detail at their dynamics, it becomes necessary to use
higher frequencies and shorter pulses, and here the process of
high-order harmonic generation (HHG) stands out as a simple
and effective way to produce bright, short, coherent pulses of
high-frequency radiation [1].

The process of HHG is essentially driven by the ionization
of gases by a strong, long-wavelength laser pulse, which then
drives the photoelectron back to its parent ion with a high
energy, which it emits as a single photon. This permits a
large flexibility in the emission process, and its sub-laser-cycle
nature allows us to probe atomic and molecular systems at their
own time scales. Unfortunately, however, its collision-driven
nature has long left unavailable one of the crucial tools in the
toolbox—the use of circular polarizations [2].

A number of attempts have been made over the years
to produce high-order harmonics with circular or elliptical
polarization [3–8], which would enable detailed time-resolved
studies of magnetic materials and chiral molecules, but they
have generally suffered from complex configurations, low
efficiencies, and limited harmonic ellipticities. These limita-
tions were recently overcome by combining counter-rotating
circularly polarized drivers [9,10], in a so-called “bicircular”
configuration; this produces fully circular harmonics at similar
efficiency to linear-polarization schemes, and it can be imple-
mented with minimal modifications to existing beamlines [11].

The simplest configuration uses drivers with equal inten-
sities at frequencies ω1 = ω and ω2 = 2ω, in which case the
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fields combine to make a trefoil-shaped Lissajous figure [12],
with a threefold dynamic symmetry: the system is unchanged
under the combined action of a rotation by 120◦ and a temporal
delay by one-third of the period of the fundamental. This
dynamical symmetry enforces a corresponding selection rule
on the harmonic response of the system [13], which only
permits the emission of harmonics at frequency (3n + 1)ω,
with the same polarization as the fundamental (right-handed,
�), and at frequency (3n − 1)ω, with the same polarization as
the second harmonic (left-handed, �).

This selection rule, however, is silent on the relative strength
of the harmonic emission at these two helicities: it specifies
what can happen, but not the amplitude at which it does.
It therefore came as a surprise when experiments showed a
definite asymmetry between the two helicities in the plateau
harmonics, with a preference for right-handed harmonics that
corotate with the lower-frequency driver [10,14,15]. There
is some debate over the origin of this asymmetry, since it
can have a macroscopic origin from chiral phase-matching
properties [16]; on the other hand, it is also present in
numerical simulations of the time-dependent Schrödinger
equation [15,17–19], so it appears to come from both mi-
croscopic and macroscopic effects.

More intriguingly, the asymmetry is much stronger in
neon than in helium, so it is evidently caused by (and a
good testing ground for) the harmonic emission from p-shell
electrons [20]; this makes it an object of intrinsic interest,
since the contributions of the orbital angular momentum of
electrons to HHG emission are relatively hard to bring to the
fore. Moreover, this asymmetry is technologically relevant,
since an asymmetric spectrum is more chiral [21], and is
therefore less dependent on spectral filtering for its use in chiral
experiments like enantiomer detection [22] or x-ray magnetic
circular dichroism [10], so it can be applied even in systems
with a broad spectral response.

In this paper we examine the asymmetry in the emission
of opposite helicities by analyzing the harmonic generation
process in a noninertial frame which rotates at half the
frequency difference between the two drivers, α = 1

2 (ω2 −
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FIG. 1. (a) Electric field and vector potential in the laboratory
frame, and transformation to the rotating frame. (b) Fields on the
rotating frame: electric field FR (blue), “vector potential” AR (green),
the derivative of the vector potential − dAR

dt
(purple), and the difference

FR + dAR
dt

= α × AR(t) of the latter with the electric field (gray).

ω1) = 1
2ω [23,24], as explored in depth for bicircular HHG

by Reich and Madsen [25,26], in which frame the bicircular
fields become monochromatic and linearly polarized, as
shown in Fig. 1. We work within the workhorse strong-field
approximation (SFA) [27,28], which is well understood for
bicircular fields in the laboratory frame [8,29], and which
explains the harmonic emission in terms of complex-valued
quantum trajectories [30,31].

The transformation to the rotating frame induces two main
effects as regards the dynamics. On one hand, the frame’s
rotation introduces a Coriolis term of the form αL̂z in the
Hamiltonian; this is an effective magnetic field and it shifts
the ionization potential of the p-shell states, thereby altering
their contribution to the ionization. As a much less intuitive
effect, the frame transformation Rz(αt) involves a rotation by
complex angles when the ionization time is imaginary, and this
changes the trajectories in ways that are interpreted differently
by the two p-state transition matrix elements. In this work
we examine in detail these effects, which bring to the fore
the role of complex times in the ionization dynamics driven
by circularly polarized fields [32] and, more generally, give an
interesting window into the behavior of complex-time methods
in noninertial frames.

In addition, since in the rotating frame the driver is
monochromatic, its harmonic emission forms a single comb,
with both elements of each line pair superposed, and this
enables us to study the line-pair emission asymmetry through

the polarization of each rotating-frame harmonic. This pro-
vides a different perspective into the quantum-orbit dynamics,
and it allows us to conclusively tie the asymmetry in the
s-state emission to a nonzero imaginary component of the
recollision velocity in bicircular fields, in both the rotating and
the laboratory frames.

This paper is structured as follows. In Sec. II we formulate
the strong-field approximation in the rotating frame and we
present the resulting spectra and polarization of the harmonics
in Sec. III. Then, in Sec. IV, we analyze the origin of the
helicity asymmetry, and its grounding in the quantum-orbit
trajectories in the rotating frame. We include, in Appendix A,
laboratory-frame versions of our rotating-frame results, for
comparison, and in Appendix B we derive the necessary p-
state dipole transition matrix elements.

II. STRONG-FIELD APPROXIMATION IN
A ROTATING FRAME

We consider the Hamiltonian for the interaction of a single
electron with a strong laser field in the length gauge of the
form

HL(t) = 1
2 p̂2 + V0(r̂) + r̂ · F(t), (1)

where F(t) is the external field, V0(r̂) is an effective atomic
potential, and we use atomic units unless otherwise stated.
Here we have taken the single-active-electron (SAE) approxi-
mation, as in previous works [17], in the understanding that one
should calculate the emission dipoles from all the participating
orbitals and then add them coherently (as dipole vectors,
but incoherently with respect to the single-electron Hilbert
space [20]). The external field we take in the form

F(t) = Re(F ê1e
−iωt + F ê2e

−2iωt ), (2)

where ê1 = ê+ and ê2 = ê− are the circular-polarization unit
vectors ê± = ∓(êx ± iêy)/

√
2.

To analyze this Hamiltonian we change to the rotating
frame [23–26] through the unitary transformation U (t) =
e−iαtL̂z , which affects states as |ψL〉 �→ |ψR〉 = U (t)|ψL〉 and
vector operators such as the position operator via

U (t)r̂U (t)† = Rz(αt)r̂ =
⎛
⎝ cos(αt) sin(αt) 0

− sin(αt) cos(αt) 0
0 0 1

⎞
⎠

⎛
⎝x̂

ŷ

ẑ

⎞
⎠.

(3)

Similarly, the laboratory-frame Hamiltonian HL(t) is trans-
lated to the rotating-frame Hamiltonian HR(t) through

ĤR(t) = U (t)ĤL(t)U (t)† − iU (t)
∂

∂t
U (t)†

= 1

2
p̂2 + V0(r̂) + r̂ · FR(t) + αL̂z, (4)

where we have assumed a spherically symmetric atomic
potential V0(r), and we use the fact that Mu · v = u · MT v =
u · M−1v for any orthogonal matrix M , to obtain the rotating-
frame electric field FR(t) = R−1

z (αt)F(t).
Generally speaking, the effect of the frame transformation

on time-dependent vectors is to blueshift right-circular fields
by α, and to similarly redshift left-circular fields. This comes
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from the action of the rotation matrix on the circular unit
vectors ê±

R−1
z (αt)ê± = ∓ 1√

2
R−1

z (αt)(êx ± iêy) = e∓iαt ê±, (5)

which therefore means that a circularly polarized vector a(t) =
Re(a ê±e−iνt ) transforms to

aR(t) = R−1
z (αt)a(t) = Re(a e−iνt R−1

z (αt)ê±)

= Re(a e−i(ν±α)t ê±). (6)

For the driving field in (2), taking α = ω/2 shifts the two
components towards a single frequency, giving a linearly
polarized field

FR(t) = F cos

(
3

2
ωt

)
êx. (7)

The field in (7) can only emit odd harmonics of 3
2ω in the

rotating frame, but the circular components of the (2k +
1)th harmonic will then be shifted to (2k + 1) 3

2ω ± 1
2ω =

(3k + 3±1
2 )ω, so we recover the laboratory-frame selection

rules.
Having transformed the full Hamiltonian to the rotating

frame, we now proceed in the fashion of the standard
strong-field approximation (SFA) formalism [27,28], which
propagates the wave function under the action of the atomic
Hamiltonian,

Ĥ0,R = 1
2 p̂2 + V0(r̂) + αL̂z, (8)

until the time of interaction with the laser (or ionization time),
t ′; the dynamics is governed from then onwards by the laser
Hamiltonian

ĤR,las(t) = 1
2 p̂2 + αL̂z + r̂ · FR(t)

= 1
2 p̂2 + αL̂z + V̂R,las(t). (9)

The wave function in the rotating frame thus reads

|�(t)〉 = −i

∫ t

tref

dt ′UR,las(t,t ′)V̂R,las(t ′)U0,R(t ′,tref)|g〉

+U0,R(t,tref)|g〉, (10)

where the Uα(t1,t2) = T {exp[−i
∫ t2
t1

Hα dt]} are the atomic
and laser-driven time-ordered evolution operators. Our main
observable will be the time-dependent dipole moment in the
rotating frame, which is then of the form

DR(t) = 〈�(t)|−r̂|�(t)〉
≈ i〈g|U0,R(tref,t)r̂

×
∫ t

tref

dt ′UR,las(t,t ′)V̂R,las(t ′)U0,R(t ′,tref)|g〉 + c.c.

(11)

once we neglect continuum-continuum transitions; here +c.c.
represents the complex conjugate of the previous term, which
we will drop unless necessary. The time-dependent dipole in
the rotating frame presents two key modifications with respect
to that calculated in the laboratory frame as follows.

(i) The addition of the Coriolis term αL̂z modifies the
ionization potential differently for different p orbitals:

Ĥ0,R|p±〉 = [−Ip ± α]|p±〉, (12)

leading to a higher ionization rate for the p+ orbital
[33,34].

(ii) The Schrödinger-equation solutions for the Hamiltonian
in (9) are now the rotating-frame Volkov states. To calculate
them, we start by their usual definition in the laboratory frame
[35],

|�p(t)〉 = e− i
2

∫ t

t ′ [p+a(τ )]2dτ |p + a(t)〉, (13)

where A(t) is the vector potential of the field, satisfying F(t) =
− dA

dt
, and |p + A(t)〉 is a plane wave with kinetic momentum

p + A(t); this Volkov state obeys the Schrödinger equation

i∂t |�p(t)〉 =
[

1

2
p̂2 + r̂ · F(t)

]
|�p(t)〉. (14)

These states are easiest to understand by considering the
temporal evolution of the plane-wave component on its own:
this obeys a Schrödinger equation of the form

i∂t |p + A(t)〉 = r̂ · F(t)|p + A(t)〉, (15)

and since the solutions remain as plane-wave eigenstates
of the kinetic energy, the addition of the kinetic phase
e− i

2

∫ t

t ′ [p+A(τ )]2dτ is a trivial step.
The transformation of the plane-wave component into the

rotating frame is then simple to implement, since we only need
to rotate the eigenvalue,

U (t)|p + A(t)〉 = |R−1
z (αt)[p + A(t)]〉, (16)

and it is easy to show directly that this state obeys the correct
Schrödinger equation,

i∂t |R−1
z (αt)[p + A(t)]〉 = [r̂ · FR(t) + αL̂z]

× |R−1
z (αt)[p + A(t)]〉. (17)

Since the solution remains as a plane wave for all time, we can
simply add the kinetic phase directly, to obtain the rotating-
frame Volkov states,∣∣�(α)

p (t)
〉 = e− i

2

∫ t

t ′ [p+A(τ )]2dτ |R−1
z (αt)[p + A(t)]〉, (18)

which are the rotating-frame continuum solutions of the
Schrödinger equation under the Hamiltonian in (9).

We can now add in the known dynamics of our ground
state and the continuum, through the relations U0,R(t,tref)|g〉 =
ei(Ip−mα)(t−tref )|g〉, where m is the magnetic quantum number of
the ground state, i.e., L̂z|g〉 = m|g〉, and the laser propagator
in the form UR,las(t,t ′) = ∫

dp|�(α)
p (t)〉 〈�(α)

p (t ′)|, which turns
the harmonic dipole into

DR(t) = i

∫ t

tref

dt ′
∫

dp d∗{R−1
z (αt)[p + A(t)]

}
×ϒ

{
R−1

z (αt ′)[p + A(t ′)]
}

× e−i(Ip−mα)(t−t ′)− i
2

∫ t

t ′ [p+A(τ )]2dτ . (19)

In the above, d(k) = 〈k|r̂|g〉 is the dipole transition matrix
element between the ground state and a plane wave, and we
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have reduced the ionization dipole via integration by parts
to the momentum-space ground-state wave function ϒ(k) =
( 1

2 k2 + Ip)〈k|g〉 following [28].
To fully specialize the analysis to the rotating frame, we

now perform a change of variables of the form p �→ pR =
R−1

z (αt ′)p, for each of the momentum integrals as indexed by
the ionization time t ′, giving us a harmonic dipole in the form

DR(t) = i

∫ t

tref

dt ′
∫

dpR d∗{R−1
z [α(t − t ′)]pR + AR(t)

}
×ϒ[pR + AR(t ′)]

× e−i(Ip−mα)(t−t ′)− i
2

∫ t

t ′ {R−1
z [α(τ−t ′)]pR+AR(τ )}2dτ . (20)

This then changes the ionization matrix element to a single
kinetic momentum, pR + AR(t ′), and it also ensures that the
canonical momentum has been rotated via R−1

z [α(t − t ′)] by
the time of recollision through the action of the Coriolis force.

Most importantly, the role of the vector potential A(t) in the
SFA expression is now taken by the rotating-frame potential

AR(t) = R−1
z (αt)A(t), (21)

which is a significant change since this is no longer a true vector
potential, because its time derivative no longer coincides with
the electric-field vector in the rotating frame. Instead, we have

FR(t) = −dAR

dt
(t) + α × AR(t), (22)

which is the standard connection between time derivatives
in the laboratory and rotating frames [36], where α = αêz is
the rotation axis and the cross product α×, seen as a linear
operator, is cleanly related to the derivative of the rotation
matrix as

α× = −αR′
z(θ )R−1

z (θ ) = −αR−1
z (θ )R′

z(θ )

= α

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠. (23)

This means, then, that the rotating-frame vector potential is
no longer linearly polarized, as a simple consequence of the
frequency shifts of circular fields in (5): at equal intensities,
the contribution of the second harmonic to A(t) is reduced
by a factor of two, so once the two components are shifted
to the same frequency, the total field is elliptically polarized,
as shown in Fig. 1. This effect increases with the frequency
difference, so in ω : 3ω and higher-order schemes, the rotating-
frame vector potential, which determines the SFA action and
therefore the corresponding quantum-orbit trajectories, is even
closer to circular.

To conclude our manipulations of the harmonic dipole, it
is worth performing an explicit saddle-point analysis over the
momentum integration, which has the action

S(pR,t,t ′) = (Ip − mα)(t − t ′)

+1

2

∫ t

t ′
{R−1

z [α(τ − t ′)]pR + AR(τ )}2dτ. (24)

Since the action is quadratic in pR, there is a unique solution
of the return equation ∂S

∂pR
= 0, which has the form

pR,s(t,t
′) = −1

t − t ′

∫ t

t ′
Rz[α(τ − t ′)]AR(τ ) dτ, (25)

with the rotation again caused by the Coriolis effect on the
rotating frame.

Similarly, performing the saddle-point approximation [37]
with respect to the momentum integration therefore gives

DR(t) = i

∫ t

tref

dt ′
(

2π

ε + i(t − t ′)

)3/2

× d∗{R−1
z [α(t − t ′)]pR,s(t,t

′) + AR(t)
}

×ϒ[pR,s(t,t
′) + AR(t ′)]

× e−i(Ip−mα)(t−t ′)− i
2

∫ t

t ′ {R−1
z [α(τ−t ′)]pR,s (t,t ′)+AR(τ )}2dτ ,

(26)

where the added factor represents the wave-packet diffusion
over time t − t ′, with an added regularization factor ε coming
from a failure of the momentum saddle-point approximation
at t − t ′ � 1/Ip. Finally, to connect the time-dependent
harmonic dipole to the experimental spectra we take the
Fourier transform,

DR() = i

∫ ∞

−∞
dt

∫ t

tref

dt ′
(

2π

ε + i(t − t ′)

)3/2

× d∗{R−1
z [α(t − t ′)]pR,s(t,t

′) + AR(t)
}

× ϒ[pR,s(t,t
′) + AR(t ′)] (27)

× e+it−i(Ip−mα)(t−t ′)− i
2

∫ t

t ′ {R−1
z [α(τ−t ′)]pR,s (t,t ′)+AR(τ )}2dτ ,

and we analyze this double temporal integral using the
standard saddle-point methods [27–29,37], giving a sum of
contributions coming from discrete times ts ,t

′
s which represent

discrete quantum orbits. Our implementation is available from
Refs. [38,39].

The resulting saddle points closely resemble the quantum-
orbit behavior in the laboratory frame [29], and we show the
saddle points and their relationship with the harmonic order
and the trajectory-determined harmonic emission in Fig. 2. As
in the laboratory frame, there are multiple possible quantum
orbits, spanning several possible returns of the photoelectron
to the ion, but the ionization factor |e−iS |2 strongly selects
the shortest quantum orbit (with excursion times τ = t − t ′
between 50◦/ω and 150◦/ω, shown in black). The addition of
the rotation factor eimα(t−t ′) to the action shifts the contributions
of the p± orbitals by a factor of about 2.3, which comes from
the added ionization potential; there is also a slight shift in the
ionization saddle points, but its contribution to the harmonic
emission is negligible.

Having completed the rotating-frame calculation, to get a
concrete spectrum we still require an explicit recombination
dipole d∗(k) and the ionization matrix element ϒ(k) for the p

states in question; these we calculate in Appendix B for a short-
range wave function of the form 〈r|g〉 = Cκ,� Ylm(r̂)e−κr/κr ,
where κ is the characteristic momentum of the ionization
potential Ip = 1

2κ2 and Cκ,� is a normalization factor that is
irrelevant for our purposes [33].
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FIG. 2. Behavior of the temporal saddle points in the rotating frame. The harmonic emission as a function of harmonic order (a) varies
for the multiple contributing quantum orbits; this dependence is best expressed through the (complex) excursion time τ = t − t ′, which we
plot in (d), and which give the well-known energy-time mapping (b) and the harmonic emission in (c), which closely resembles the known
laboratory-frame results [29, Fig. 8]. In (a) and (c) the line triplets correspond to m = 1, 0, and −1, from top to bottom.

III. HARMONIC SPECTRA AND POLARIZATION

Our framework now enables us to calculate the harmonic
spectrum in the rotating frame, which we show in Fig. 3, where
we consider monochromatic fields of wavelength 800 nm and

intensity I = 1.88 × 1014W/cm2 acting on neon, with an
ionization potential of 21.6 eV; we also show the emission
of a (fictional) s orbital at the same ionization potential,
for easier comparison. We examine the contributions of six
ionization bursts, spanning one revolution of the rotating
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FIG. 3. Harmonic spectra in the rotating frame for p−, p+, and s orbitals (for neon in a 800 nm field of intensity I = 1.88 × 1014 W/cm2),
and for the coherent addition of both p emissions [(a), (b), (c), and (d), respectively], with the right- and left-handed components shown in red
and blue (milder and darker gray), respectively, and the total emission in light gray. The harmonics represent two periods of the rotating-frame
field (so 6π/ω in total) from a monochromatic field, and the continuous lines are the contributions from one single ionization burst. The lower
panels show the signed ellipticity of the emission.

frame with respect to the laboratory frame. This harmonic
emission closely matches the equivalent laboratory-frame SFA
calculation (as shown in Fig. 8), as expected, and it is a good
match to numerical Schrödinger-equation simulations [19]
(barring a region above the ionization potential at harmonics
∼13 to 22, where the SFA is known to be unreliable due to its
treatment of the continuum as flat plane waves).

The harmonic spectra in the rotating frame quickly show
several of the relevant features. For each initial orbital pm,
the corotating harmonic emission, along êm, dominates the
plateau, while the counter-rotating emission along ê−m drops
on a steep exponential, after dominating the harmonic emission
at threshold ( � Ip) and the early plateau, where the SFA
is unreliable. In the midplateau, the right-handed emission

from the p+ orbital dominates, giving an overall right-handed
spectrum, but its contribution drops slightly faster than the
p− emission, which dominates closer to the harmonic cutoff.
This effect can also be seen on numerical simulations [18,19]
and its appearance here in calculations with only the short
quantum orbit [with the second return producing harmonics
over one order of magnitude weaker, as seen in Fig. 2(c)]
provides an alternative to the existing explanations based on the
second return’s slightly higher-harmonic cutoff at excursion
times around 300◦/ω [18].

In addition to the harmonic spectra, however, the rotating
frame also affords us a more powerful tool to study the
harmonic emission—the polarization of the different lines.
In the laboratory frame, the two elements of each pair appear
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FIG. 4. Polarization ellipses of the harmonic emission (defined as the path of Re[e−iϕDR()] over ϕ ∈ [0,2π ]), color coded over the
allowed harmonics in the rotating frame,  = (2k + 1) 3

2 ω. The direction of the arrows shows the helicity of the emission; the arrows’ position
within the ellipse shows Re[DR()], excluding the standard attochirp phase e−i Re(S−t) caused by the quantum-orbit dynamics, so it tracks the
phase of the harmonics.

separately, but the transformation to the rotating frame shifts
them by ±α so that they overlap at odd multiples of 3

2ω, allow-
ing us to study the helicity asymmetry of the pair as simply the
ellipticity of each rotating-frame line, which we show as the
lower panels of Fig. 3. Thus we see that, despite a midplateau
dominance of the right-polarized emission, the ellipticity of
the global harmonic emission never exceeds ε ≈ 0.2.

More interestingly, we can also examine the polarization
ellipses directly, which we show in Figs. 4 and 5, and which
exhibit several unexpected features. Most immediately, the

spectra from Fig. 3, which coincide with features known
from the laboratory frame, require the existence of a linearly
polarized line for both p± emissions, at the point where the
right- and left-handed amplitudes cross (harmonics ∼25 for p−
and ∼22 for p+, respectively), and intuition would suggest,
given that in the rotating frame the system is driven by an
electric field along the x axis, that this linearly polarized
emission would follow that direction. However, the observed
emission is orthogonal to that, rotated by a few degrees off of
the y axis for both p-state emissions.
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FIG. 5. Polarization ellipses of the harmonic emission, as shown in Fig. 4, broken out over the harmonic order to avoid overlaps.

The global 2p emission also shows unexpected fea-
tures, in the form of a consistent rotation of the polar-
ization ellipse throughout the plateau, which arises from
the relative phase of the ê±-polarized contributions of the
two p± orbitals, and which changes across the harmonic
emission. This effect has so far gone unnoticed, but it
should be measurable through interferometric measurements
of the harmonic phase of the different members of the line
doublets [40].

On the other hand, the s-state emission shown in Fig. 4(c)
is largely linearly polarized along the rotating-frame electric
field, with a rotation by a few degrees which can be attributed
to the effects of the Coriolis force. More notably, this
polarization study clearly shows that the s-state harmonic
emission is elliptically polarized, which reflects the slight
helicity asymmetry observed in experiments [9,14,15] and
numerical simulations [15,17,19].

For the p-state emissions, the polarization is fixed by the
recombination transition dipole moment d∗(k), which is itself
given, in Eq. (B26) in terms of the circular polarization vectors
ê± with different weights, so an elliptical polarization is not
surprising. For the s-state emission, on the other hand, the

recombination dipole is fixed by the rotational symmetry of the
ground state, which requires it to lie along the recombination
velocity kr, as per Eq. (B22):

d∗(kr) ∝ kr(
k2

r + κ2
)2 . (28)

This means that, if the recombination velocity kr were
real valued (or even a complex multiple of a real-valued
vector), then its components along ê+ and ê− would have
equal magnitudes, the harmonic emission would be linearly
polarized in the rotating frame, and there would be no helicity
asymmetry for this case. Since this is in contradiction to the
results, we conclude that the recombination velocity must have
a nonzero imaginary component that is linearly independent
to its real part,1 and that the s-state helicity asymmetry is a
direct witness of this fact.

1In fact, the real and imaginary parts of the recombination velocity
kr must be orthogonal, since the recombination saddle-point equa-
tion requires that 1

2 k2
r = 1

2 [Re(kr)2 − Im(kr)2] + i Re(kr) · Im(kr) =
 − Ip be real.

063401-8



STRONG-FIELD APPROXIMATION IN A ROTATING FRAME: . . . PHYSICAL REVIEW A 96, 063401 (2017)

IV. HELICITY ASYMMETRY FROM THE
QUANTUM-ORBIT DYNAMICS

Having explored the main features of the harmonic spectra
in the rotating frame, we now turn to their origins within the
SFA expression for the harmonic dipole, and what they tell us
about the rotating-frame harmonic emission.

The most immediate feature of the harmonic spectra shown
in Fig. 3 is the swift dropoff of the counter-rotating harmonics
polarized as ê∓ in the p± emission. This can only be caused
by the recombination dipole [since it is the only part of the
SFA expression for DR() that affects the polarization], and
we show its behavior in Figs. 6(a)–6(c). This swift decay is a
consequence of the different strengths of the Clebsch-Gordan
coefficients for different angular momenta, which favors the
emission of a photon with an angular momenta rotating in the
same direction as the target state [19]. It is also influenced by
the interference between the two ê∗

m components in (B26)—the
s-wave component in S00 and the d-wave component in
S20—and as such it is relatively fragile to effects coming
from scattering phases in more structured continua, especially
for low energies. We also note that in the rotating frame the
counter-rotating lines for p+ and p− differ by ω due to the

change in the Ip, in contrast to the laboratory frame where
they are equal.

In addition to this, there is a clear dominance of the
right-handed recombination dipole from the p+ emission [red
(milder gray) in Fig. 6(c)] over the left-handed recombination
dipole from the p− emission [blue (darker gray) in Fig. 6(a)],
which is modest but sustained throughout the range of the emis-
sion. To understand the origin of this imbalance, we look at the
recombination dipoles from (B26), which tells us that those
dominating components are given, up to common factors, by

ê∗
m · d∗

1m(kr) ∝ S2,−2m(kr) ∝ (kr,x − mikr,y)2

∝ [ê∗
m · kr]

2 = k2
r,±, (29)

where kr is the recollision velocity. The component
kr,± = ê∗

± · kr = ∓1√
2
(kr,x ∓ ikr,y) of the recollision velocity

is not an intuitive object, but we have already encountered
it, through the elliptical polarization of the s-state emission,
where it diagnosed a nonzero imaginary part of the recollision
velocity as responsible for the imbalance in the s-state
recollision dipole shown in Fig. 6(b). For the dominant ê±
component of p±-state emission, this factor is squared, giving

FIG. 6. Geometrical factors affecting the helicity asymmetry and the harmonic intensity for the different initial ground-state orbitals, in
atomic units. (a)–(c) The recombination dipole |drec|2 = |d∗

lm{R−1
z [α(t − t ′)]pR,s(t,t ′) + AR(t)}|2. (d)–(f) The ground-state ionization factor

|ϒion|2 = |ϒlm[pR,s(t,t ′) + AR(t ′)]|2. The solid black lines indicate the ionization factor while the dashed black lines show the ionization factors
with an exponential term removed, |e−imαt ′ϒion|2, which closely match the laboratory-frame versions of Figs. 9(d) and 9(f). (g)–(i) Complex
exponential of the action, in arbitrary units. (j)–(l) Complex exponential of the action multiplied by the ground-state ionization factor, in
arbitrary units. In all panels, the gray lines are plotted for visual reference and indicate the lines of the other columns.
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twice the separation, and this is again caused by the fact that
the recollision velocity is complex valued [19].

However, for p states, this is not the end of the story,
because the dominant emission on each circular component
comes from a different orbital, and the two p ground states
ionize at different rates, shown in Figs. 6(j)–6(l). In terms of
the harmonic spectrum, this can be seen in the dominance
of left-polarized harmonics near the cutoff in the total
harmonic emission of Fig. 3(d), despite the fact that the p+
recombination dipole dominates throughout the spectrum.

To understand the ionization rate that causes these differ-
ences, we separate it into its two natural factors: the regularized
matrix element ϒ(ki) = ( 1

2 k2
i + Ip) 〈ki|g〉, where ki is the

ionization velocity, and the tunneling action e−iS , which is
affected by the m-dependent ionization potential. We have
already explored the action in Fig. 2(a), and we recapitulate
its behavior over the short quantum orbits in Figs. 6(g)–6(i).

In addition to this global shift in the action, however, there
is also a strong dependence in the reduced matrix element,
as shown in Figs. 6(d)–6(f): this includes both an overall
prevalence of the p− ionization, opposite to the suppression
from the action, as well as a rolling dependence on the
harmonic order, with the p+ becoming even more suppressed
towards the cutoff. This rolling dependence is very similar
to the laboratory-frame dependence of the ionization factor
ϒ(ki), with an offset—and, in fact, if we factor out the
exponential factor of e−imαt ′ from the action and we add it
to the ϒ(ki), as shown dashed in Figs. 6(d) and 6(f), the match
to the laboratory-frame ionization factor of Figs. 9(d)–9(f)
is essentially exact. As such, the total ionization amplitude
|ϒe−iS |2, shown in Figs. 6(j)–6(l), does not change when
moving to the rotating frame.

This tells us, then, that in addition to affecting the
ionization potential through an effective magnetic field, the
transformation to the rotating frame also has a strong effect on
the ionization matrix element ϒ(ki) ∝ 〈ki|g〉—and, moreover,
that this effect exactly cancels out that of the effective magnetic
field.

In essence, the change in the ionization matrix element is
caused by the rotation of the ionization velocity kL,i in the
laboratory frame to the rotating frame, via the rotation

kR,i = R−1
z (αt ′)kL,i, (30)

except that now, because the ionization time t ′ is complex,
the frame transformation must now go over a complex angle
αt ′. For real angles, the eigenvectors of the rotation R−1

z (αt ′)
are the circular unit vectors ê±, but this relationship holds for
all complex-valued rotation angles, because the trigonometric
algebra that underpins the eigenvalue relation in Eq. (5) will
work for any arbitrary complex αt ′. However, if the rotation
angle αt ′ is imaginary, the eigenvalues e∓iαt ′ are no longer
pure phases: instead, they become amplitude factors that affect
exponentially the size of the component along each circular
unit vector after the transformation. Thus, for positive Im(t ′),
the ê+ component is exponentially enhanced, while the ê−
component is suppressed.

To understand these changes, it is helpful to look at the
explicit frame transformation when the rotation angle is large

and positive imaginary, in which case it takes the form

R−1
z (iατ ) =

⎛
⎝ cosh(ατ ) −i sinh(ατ ) 0

i sinh(ατ ) cosh(ατ ) 0
0 0 1

⎞
⎠

≈ 1

2
eατ

⎛
⎝1 −i 0

i 1 0
0 0 0

⎞
⎠. (31)

Here the positive exponential factor overwhelms the rest of
the matrix, and it is left multiplying the projector ê+ê†+,
which turns any real-valued vector into a multiple of the
right-handed unit vector ê+. Geometrically speaking, the
action of this transformation on any real vector amplifies it
and gives it an imaginary component 90◦ counterclockwise
from its real part; the same is true (approximately) for the full
hyperbolic-functions matrix on the left. [Similarly, the action
of R−1

z (−iατ ) on a real vector gives it an imaginary component
directed clockwise from its real part.]

More importantly, the ionization matrix element is directly
proportional to the circular components of k, since the solid
harmonic involved,

ϒ1m(ki) ∝ S1m(ki) ∝ ki,x + miki,y, (32)

is nothing more than the rotating-frame ionization velocity’s
component along the circular unit vector ê−m, as shown in
Eq. (B11). As discussed above, the eigenvalue associated to
the eigenvector ê−m of the rotation is the factor e+imαt ′ , exactly
the opposite to that induced in the action by the ionization-
potential change.

These considerations can be brought to the fore more clearly
by examining the quantum-orbit complex trajectories

rR(t) = R−1
z (αt)rL(t) = R−1

z (αt)
∫ t

ti

[pL + A(τ )]dτ

= R−1
z [α(t − ti)]

∫ t

ti

{pR + Rz[α(τ − ti)]AR(τ )}dτ

(33)

responsible for the harmonic generation, which we show
in Fig. 7, and whose real parts resemble the recolliding
quantum orbits in an elliptical field [41]. As far as the circular
components ki,± are concerned, though, the most important
aspect is the chiral interplay between the real and imaginary
parts of the trajectory and its velocity and, specifically, whether
the rotation from the real to the imaginary part is mostly
clockwise or counterclockwise.

In the rotating-frame quantum orbits, this chiral relation is
clear and constant: the imaginary part of the position, shown in
blue (darker gray), goes off towards the negative y direction,
counterclockwise from the real part. In contrast, this effect
does not appear in the laboratory frame, shown in Fig. 10,
where the real and imaginary parts of the trajectory can and
do lie on either side of each other.

This behavior is also visible when we examine the velocity,
in Figs. 7(b), 7(d) 7(f), and 7(h): the real and imaginary
parts of the ionization velocity (shown as pale red and blue
arrows, respectively) are also in a clear chiral relation, with
the imaginary part 90◦ counterclockwise from the real part:
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FIG. 7. Photoelectron trajectories in the rotating frame, corresponding to harmonic orders 17, 27, 37, and 47, both over position and velocity
(left and right columns, respectively), in atomic units. We show the real and imaginary parts of the trajectory in red and blue (milder and darker
gray), respectively, and we take the trajectory over the standard contour shown in the inset, between the ionization and recombination times of
the short quantum orbit (shown in gray); the equispaced dots mark progress along the contour. In the right-hand column, the pale arrows mark
the start of the trajectory, i.e., the ionization velocity.

this is the fundamental chiral asymmetry which produces the
enhanced ϒ(ki) ionization factor for the p− orbital in the
rotating frame, and which is absent in the laboratory-frame
trajectories of Figs. 10(b), 10(d) 10(f), and 10(h).

It is also important to note that this chiral relationship is
independent of the choice of contour that joins the complex
ionization and recollision times, which is in principle arbitrary.
Measures based on the sense of rotation of the trajectories are
somewhat fragile in this regard, but a change in the contour will
multiply ki and kr by a complex number, which will not alter
the chiral relationship between their real and imaginary parts.

More generally, it is important to remark that the traditional
SFA splitting of the harmonic dipole into ionization, propaga-
tion, and recombination factors [28] changes when we move
from the usual laboratory frame, as in Fig. 9, to the rotating
frame, as in Fig. 6. That is, these changes tell us that this

factorization, being dependent on the frame of reference, is
artificial, and does not carry strict physical meaning.

Similarly, the recollision velocity also exhibits a persistent
chiral asymmetry throughout the harmonic spectrum: in a
sense this is weaker, since the imaginary part of the recollision
velocity is smaller, but it is also more robust, because the
recollision time is largely real and this means that the behavior
remains in the laboratory frame. This is the fundamental chiral
asymmetry that is responsible for the ellipticity of the s state
in the rotating frame, and therefore also for the helicity asym-
metry in the harmonic emission of helium in bicircular fields.

To summarize, then, the SFA formalism can be cleanly
reexpressed in the rotating frame to bring fresh insights into
the harmonic emission in bicircular fields. The added Coriolis
term shifts the contributions of the different orbitals, but this
effect is exactly canceled out by the complex-angle rotation of
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the ionization velocity, which introduces exponential changes
to the amplitude of its two circular components, with strong
implications for the quantum-orbits theory of ionization in
circularly polarized fields. Furthermore, the joining of the
line doublets in the rotating frame enables us to perform
a polarimetric analysis to get additional insights—notably,
that the s-state helicity asymmetry is directly caused by the
imaginary part of the recollision velocity—as well as obtain
observations—like the rotation of the polarization axis of the
full 2p emission—that are amenable to experimental testing.
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APPENDIX A: RESULTS IN THE LABORATORY FRAME

In this appendix we show laboratory-frame versions of
some of our results for comparison with their rotating-frame
counterparts; we include them separately to avoid the chance
of confusion between the two frames. In the laboratory frame,
the SFA formalism is well known [27,28], and in essence it
requires the calculation of

DL() = i

∫ ∞

−∞
dt

∫ t

tref

dt ′ d∗[pL,s(t,t
′) + AL(t)]

×
(

2π

ε + i(t − t ′)

)3/2

ϒ[pL,s(t,t
′) + AL(t ′)]

×e+it−iIp(t−t ′)− i
2

∫ t

t ′ [pL,s (t,t ′)+AL(τ )]2dτ . (A1)

FIG. 8. Harmonic spectra in the laboratory frame, presented as in Fig. 3.
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FIG. 9. Geometrical factors affecting the helicity asymmetry and the harmonic intensity for the different orbitals in the laboratory frame,
presented as in Fig. 6.

We show the resulting harmonic spectra in Fig. 8, which
exhibits the usual selection rules, with right-handed harmonics
at (3n + 1)ω and left-handed harmonics at (3n + 2)ω. The
s-state emission, shown in Fig. 8(c), shows the usual helicity
asymmetry, while the total p-state emission in Fig. 8(d) has
an enhanced asymmetry in the midplateau, which is then lost
near the cutoff.

Similarly, we show in Fig. 9 the internal structure of the
factors that lead to the helicity asymmetry, as in Fig. 6; here the
action is independent of m, and the reduced ionization matrix
elements |ϒion|2 in Figs. 9(d)–9(f) do not show the shifts they
exhibit in the rotating frame, so that the total ionization factor
|ϒione

−iS |2 in Figs. 9(j)–9(l) is essentially identical to that in
the rotating frame.

Finally, we present in Fig. 10 the laboratory-frame
quantum-orbit trajectories that correspond to the same situ-
ations as in Fig. 7, using the same conventions. In contrast to
the rotating frame, the ionization velocity has an imaginary
part that can be in either chiral relation to the real part: while
Im[vL(ti)] remains in the fourth quadrant (pale blue arrow),
Re[vL(ti)] changes from the second to the fourth quadrants
(pale red arrow), going through a zero at  ≈ 37ω, which
corresponds to the crossing between the p-state ionization
matrix elements in Figs. 9(d)–9(f).

In terms of the position-space trajectories, this helicity
crossing at  ≈ 37ω can be seen in the shift of the imaginary
part of the trajectory as the photoelectron departs from the
origin during the tunneling step: before the crossing Im[rL(t)]
is clockwise from Re[rL(t)], and after the crossing it lies

counterclockwise from it. At the crossing itself, the real part
of the ionization velocity is exactly zero, which means that
Im[rL(t)] is quadratic, instead of linear, in t − ti at the moment
of ionization, with the imaginary trajectory initially lying along
the real part of the position.

APPENDIX B: TRANSITION DIPOLES FOR p STATES

In this appendix we calculate the functions d(k) = 〈k|r̂|g〉
and �(k) = 〈k|g〉 for the ground states of interest, the 2p± and
a (fictional) s states of neon. We model these using a short-
range potential, which gives a ground-state wave function of
the form

〈r|ϕlm〉 = Ylm(r̂)ϕlm(r) = Ylm(r̂)C
e−κr

κr
, (B1)

where 1
2κ2 = Ip. We begin with the simpler quantity, the

momentum-space wave function, calculating the inner product
over position space. To do this, we separate the plane-wave
factor into partial waves [42], in the form

eik·r = 4π

∞∑
l′=0

l′∑
m′=−l′

il
′
jl′ (kr)Yl′m′ (r̂)Y ∗

l′m′(k̂)

= 4π

∞∑
l′=0

l′∑
m′=−l′

il
′ jl′(kr)

kl′ Yl′m′(r̂)S∗
l′m′ (k), (B2)

where we turn the momentum spherical harmonic into a solid
harmonic Slm(k) = klYlm(k̂), a homogeneous polynomial of
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FIG. 10. Photoelectron trajectories in the laboratory frame, presented as in Fig. 7. To aid comparison, we have applied a global rotation by
90◦ counterclockwise, as shown in the tick marks and axis labels, which does not otherwise affect the results.

degree l in the Cartesian components of k, since we are
interested in maintaining explicit analyticity with respect to
those harmonics. [Similarly, the Bessel factor jl′(kr)/kl′ is
guaranteed to be an entire function of k2 because of the
low-argument asymptotics jl′(kr) ∼ (kr)l

′
.]

1. Momentum-space wave functions

Using this decomposition, we can express �(k) in the form

�lm(k) = 〈k|ϕlm〉 =
∫

dr
(2π )3/2

e−ik·rϕlm(r)

=
∞∑

l′=0

l′∑
m′=−l′

2i−l′

√
2π

Sl′m′ (k)
∫

Y ∗
l′m′ (r̂)Ylm(r̂)d

×
∫ ∞

0

1

kl′ jl′(kr)ϕlm(r)r2dr

= 2i−l

√
2π

Slm(k)
∫ ∞

0

1

kl
jl(kr)ϕlm(r)r2dr

= Slm(k)Gl(k), (B3)

where the angular integral reduces to δll′δmm′ , giving only a
single term in � with the same angular dependence as 〈k|ϕlm〉,
and a radial term which we encapsulate into

Gl(k) = 2i−l

√
2π

∫ ∞

0

1

kl
jl(kr)ϕlm(r)r2dr, (B4)

an analytic function of k2. To calculate this, we now need to
put in an explicit ground-state wave function.

The simplest is the 2s state, which has the angular
dependence S00(k) = 1/

√
4π , and for which the radial integral
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reduces to

G0(k) = 2√
2π

C

κ

∫ ∞

0
j0(kr)e−κr r dr = 2√

2π

C

κ

1

k2 + κ2
,

(B5)

giving

�00(k) = C/κ√
2π

1

k2 + κ2
. (B6)

This is an analytical function of k2, and it has a pole at k = iκ

which is then regularized by the passage to ϒ00(k) = 1
2 (k2 +

κ2)�00(k), giving a fully regular integrand at the ionization
saddle point.

For 2p states, the situation is slightly more complicated,
although the radial integral

G1(k) = 2i−1

√
2π

C

κkl

∫ ∞

0
j1(kr)e−κr r dr

= 2iC√
2πκ

1

k2

[
κ

k2 + κ2
− 1

k
arctan

(
k

κ

)]
(B7)

is similarly easy to integrate. The result, however, offers some
nontrivial subtleties, since it appears to have a pole at k = 0.
This is fortunately a mirage, since the constant parts of the two
terms in the numerator cancel out, and the radial integral has
a small-k expansion of the form

G1(k) = 2iC√
2π

[
− 2

3κ4
+ 4k2

5κ6
− 6k4

7κ8
+ O(k6/κ10)

]
, (B8)

with no singular terms. On the other hand, the radial integral
in (B7) does suffer from a more serious problem, in the form
of a branch cut at k = iκ . This branch cut comes from the
behavior of the arctan term at complex arguments, and it
ultimately derives from the form of the general result for Gl(k),

Gl(k) = �(l + 2)

�(l + 3/2)

C

2l+ 1
2 ilκl+3

× 2F1

(
l

2
+ 1,

l

2
+ 3

2
; l + 3

2
; − k2

κ2

)
, (B9)

which has a natural branch cut at k2

κ2 = −1 that only vanishes
at l = 0. We show this branch cut for the l = 1 case in Fig. 11.
In addition to the branch cut, the momentum-space wave
function �2m(k) is actually singular at the branch point, but as
with �00(k) this singularity gets regularized in the passage to
ϒ2m(k) = 1

2 (k2 + κ2)�2m(k).
Unfortunately, the branch cut is in an inconvenient location,

because the requirement that k2 + κ2 = 0 is precisely the
saddle-point equation for the ionization time for the 2s state.
This point is not problematic, but the saddle point for the
2p− state gets pushed to higher imaginary part due to its
increased ionization potential in the rotating frame, and it
would therefore fall on or near the branch cut. This means,
therefore, that for consistency we will need to retain the saddle
point for the 2s state for use in the ionization matrix element
ϒ[pR,s(t,t ′) + AR(t ′)].

FIG. 11. Regularized radial dependence of the momentum-space
wave function for a 2p state, ϒr (k) = 1

2 (k2 + κ2)G1(k), over the
complex kx plane with ky = kz = 0, showing a branch cut at the
ionization momentum, kx = iκ .

It is also worth remarking that this branch cut, along with
the singularities in �00(k) and �2m(k) at k = iκ , are natural
features of the momentum-space wave function, and they can
already be discerned from its definition,

�lm(k) = C

(2π )3/2

∫
Ylm(r̂)

κr
e−ik·r−κrdr. (B10)

Here, for real k, the integral is strongly confined by the radial
exponential e−κr , and adding some imaginary parts to the
Fourier kernel does not push the envelope too far. However,
a momentum of the form k = iκ êx will change the Fourier
kernel into an exponential e+κx which is no longer well
controlled by the radial exponential, so there is no longer a
guarantee of a convergent integral.

2. Dipole transition matrix elements

The considerations for the dipole transition matrix elements
d(k) = 〈k|r̂|g〉 are similar to the above, but the presence of the
vector operator introduces some additional complexity. Thus
we can use the same partial-wave expansion for the plane wave
as above, but we also need to use appropriate language for the
vector dipole operator, which we decompose in the form

r = rx êx + ry êy + rzêz

= 1√
2

(−rx + iry)ê1 + 1√
2

(rx + iry)ê−1 + rzê0, (B11)

or, equivalently,

r =
√

4π

3
r

1∑
q=−1

Y1q(r̂)ê∗
q, (B12)

where we have used the definition of the circular basis
ê± = ∓(êx ± iêy)/

√
2. This then lets us decompose the matrix

element, which originally reads

d∗
lm(k) = 〈ϕlm |̂r|k〉 =

∫
dr

(2π )3/2
e+ik·r r ϕ∗

lm(r), (B13)
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in the form

d∗
lm(k) =

1∑
q=−1

∞∑
l′=0

l′∑
m′=−l′

23/2il
′

√
3

ê∗
qSl′m′(k)

×
∫

Y ∗
l′m′(r̂)Y1q(r̂)Y ∗

lm(r̂)d

×
∫ ∞

0

1

kl′ jl′(kr)ϕlm(r)r3dr. (B14)

We focus from this early stage on the complex conjugate
d∗

lm(k) = 〈ϕlm|r̂|k〉 of the transition dipole, which needs to
be calculated explicitly for the global temporal integrand to be
analytical.

For the dipole, the key change with respect to the
momentum-space wave function is in the angular integral,
which changes from an inner product to a triple product of
spherical harmonics. This can still be handled easily [43,
Eq. (34.3.22)], and it evaluates to a product of Wigner 3j

symbols,∫
Y ∗

l′m′(r̂)Y1q(r̂)Y ∗
lm(r̂)d

= (−1)m+m′
∫

Yl′,−m′ (r̂)Y1q(r̂)Yl,−m(r̂)d (B15)

= (−1)m+m′
√

3(2l + 1)(2l′ + 1)

4π

×
(

l l′ 1
0 0 0

)(
l l′ 1

−m −m′ q

)
. (B16)

As above, this gives a restriction on the partial waves which can
contribute to the final expression: we require that m′ = q − m,
l + l′ + 1 needs to be even, and every combination of l, l′, and
1 needs to obey the triangle inequalities. In particular, this
means that we require |l − l′| � 1 and l + l′ to be odd, so only
l′ = l ± 1 can contribute.

This then lets us cut down substantially on the form of our
matrix element, which can be expressed as

d∗
lm(k) =

1∑
q=−1

∑
l′=l±1

ê∗
qNll′mqSl′,q−m(k)Fl′l(k), (B17)

where

Nll′mq = 23/2il
′
(−1)q

√
(2l + 1)(2l′ + 1)

4π

(
l l′ 1
0 0 0

)

×
(

l l′ 1
−m m − q q

)
, (B18)

Fl′l(k) =
∫ ∞

0

1

kl′ jl′(kr)ϕlm(r)r3dr. (B19)

Here Fl′l(k) now carries the bulk of the computation, but for the
short-range wave function of (B1) it can be integrated exactly
even in the general case [44, Eq. (6.621.1)]:

Fl′l(k) = C/κ

kl′

∫ ∞

0
jl′(kr)e−κr r2dr

= C/κ

kl′+1/2

√
π

2

∫ ∞

0
Jl′+1/2(kr)e−κr r3/2dr

=
√

πC

2l′+1κl′+4

�(l′ + 3)

�(l′ + 3/2)

× 2F1

(
l′ + 3

2
,
l′

2
+ 2; l′ + 3

2
; − k2

κ2

)
. (B20)

The forms above for the transition dipole are general, but
for the case of the s states they overestimate the complexity
of the required expressions. In this case, we have only one
intermediate momentum contributing, l′ = 1, and therefore
only one integral to consider, which reduces to

F10(k) = 2C/κ

(k2 + κ2)2
, (B21)

with the constant similarly reducing to N010q = i
√

2/3π , so
the sum over q reduces to the same vector sum as in (B12), so
we have

d∗(k) = i

√
2

3π
F10(k)

1∑
q=−1

ê∗
qS1,q (k)

= i
√

2C

πκ

k
(k2 + κ2)2

. (B22)

As expected for a spherically symmetric state, the transition
dipole points exclusively in the direction of the plane wave’s
momentum.

For the 2p states, the situation is more complicated, partly
because we now have two integrals to calculate, which come
down to

F01(k) = 2C

(k2 + κ2)2
, (B23)

F21(k) = C

k4

[
− 3κ2 + 5k2

(k2 + κ2)2
+ 3

kκ
arctan

(
k

κ

)]
. (B24)

Here F21(k) shares many of the same features as G1(k), as
discussed above. For one, it appears singular because of the
factor 1/k4, but both the constant and k2 terms of the two terms
inside the square brackets cancel out, to give a global Taylor
series which is regular and nonzero at the origin. Similarly,
F21 has a branch cut at k = iκ , and it has a singularity at that
branch point, but in contrast with �(k) this pole is now of
second order, so it would not be regularized by adding a factor
of 1

2 (k2 + κ2). Fortunately, this is not a problem since we will
only need this transition dipole at the recollision momentum,
for which 1

2 (k2 + κ2) = , the harmonic photon energy, is real
and positive.

To obtain the transition dipole, we now put all of this
together. We knew already that

d∗
lm(k) =

1∑
q=−1

∑
l′=l±1

Nll′mq ê∗
qSl′,q−m(k)Fl′l(k) (B25)

and we can further simplify things since the l′ = 0 electronic
monopole term requires a polarization along q = m, giving us

d∗
1m(k) = ê∗

m[N10mmS00(k)F01(k)+N12mmS20(k)F21(k)]

+ ê∗
−mN12m,−mS2,−2m(k)F21(k)

+ ê∗
0N12m0S2,−m(k)F21(k). (B26)
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Here the Fl′l(k) are as in (B23) and (B24), the Nll′mq are given
by (B18), and the solid harmonics are given by

S00(k) = 1√
4π

, (B27a)

S20(k) =
√

5

16π

(
2k2

z − k2
x − k2

y

)
, (B27b)

S2,−2m(k) =
√

5

32π
(kx − imky)2. (B27c)

There is also in (B26) a contribution along ê0 = êz,
for which the solid harmonics are given by S2,−m(k) =
m

√
15

16π
(kx − imky)kz, and which does not contribute to the

harmonic emission in problems confined to the x,y plane; we
nevertheless include it for completeness.

In this form, the recombination dipole looks fairly complex,
but its form in (B26) belies some of its underlying simplicity.
More specifically, it is important to note that several of its
components—F01(k), F21(k) and S20(k)—are only functions
of k2 on the x,y plane, and that they are therefore constrained
by the recollision saddle-point equation,

1
2 k2 + Ip = , (B28)

which forces them to be simple functions of the harmonic
order, and that they are therefore insensitive to the details of
the quantum-orbit dynamics.

In this connection, then, it is useful to write those functions,
based on (B28), as

S20(k) =
√

5

4π
(Ip − ), (B29)

F01(k) = C

2

1

2
, (B30)

F21(k) = C/4

( − Ip)2

[
2Ip − 5

22

+ 3

2Ip

√
Ip

 − Ip

arctan

(√
 − Ip

Ip

)]
, (B31)

where for high  the latter asymptotically approaches
F21(k) ≈ 3πC

8
√

Ip

( − Ip)−5/2, though that requires harmonic

photon energies higher than /Ip � 10, and the combination
S20(k)F21(k) is mostly flat after its zero at threshold. This
means, then, that we can write down an explicit expression for
the harmonic component ê∗

−m · d∗
1m(k) which counter-rotates

with respect to the ground state in terms of the harmonic photon
energy

ê∗
−m · d∗

1m(k) = C

4
√

6 π

{
2

2
− 1

 − Ip

[
2Ip − 5

22

+ 3

2Ip

√
Ip

 − Ip

arctan

(√
 − Ip

Ip

)]}
,

(B32)

which completely fixes its structure, and forces its steep decay
throughout the plateau; the minor differences in this factor
between Figs. 6(a) and 6(a) are due to the effective Zeeman
shifts, which change Ip in (B32) to Ip − mα.

On the other hand, the component ê∗
m · d∗

1m(k) which
corotates with the ground state is more complicated, because

it depends on the solid harmonic S2,−2m(k) =
√

5
8π

k2
± and

therefore, as described in the text, is strongly affected by the
quantum-orbit dynamics and by the passage to the rotating
frame.
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