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Above-threshold ionization in multicenter molecules: The role of the initial state
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A possible route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal and
nanometer spatial resolution is to employ recolliding electrons as “probes.” The recollision process in molecules
is, however, very challenging to treat using ab initio approaches. Even for the simplest diatomic systems, such as
H2, today’s computational capabilities are not enough to give a complete description of the electron and nuclear
dynamics initiated by a strong laser field. As a consequence, approximate qualitative descriptions are called to
play an important role. In this paper we extend the work presented in Suárez et al. [N. Suárez, A. Chacón, J.
A. Pérez-Hernández, J. Biegert, M. Lewenstein, and M. F. Ciappina, High-order-harmonic generation in atomic
and molecular systems, Phys. Rev. A 95, 033415 (2017)] to three-center molecular targets. Additionally, we
incorporate a more accurate description of the molecular ground state, employing information extracted from
quantum chemistry software packages. This step forward allows us to include, in a detailed way, both the molecular
symmetries and nodes present in the high-occupied molecular orbital. We are able, on the one hand, to keep our
formulation as analytical as in the case of diatomics and, on the other hand, to still give a complete description of
the underlying physics behind the above-threshold ionization process. The application of our approach to complex
multicenter—with more than three centers—targets appears to be straightforward.
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I. INTRODUCTION

Strong-field techniques such as high-order-harmonic spec-
troscopy (HHS) are the workhorses for one of the most stim-
ulating prospects of strong-field and attosecond physics: the
extraction of electronic and nuclear information on the attosec-
ond temporal and subangstrom spatial scales using recolliding
electrons as “probes.” HHS employs the quiver motion of an
electron, which is liberated by the laser field from the target
structure itself, to analyze either the recombination spectrum
or the momentum distribution of the rescattering electron.

For instance, the Dyson orbital of an N2 molecule was
reconstructed with tomographic techniques, using the informa-
tion contained in the high-order-harmonic generation (HHG)
spectrum [1]. The original interpretation of these experiments
relies on the strong-field approximation (SFA), which provides
a fully quantum description of the well-known “three-step
model.” Later on, Itatani et al.’s [2] experiment sparked a
true avalanche of experimental and theoretical work on the
subject. The use of approximations in the theoretical modeling
of HHG in molecules (and in particular the SFA) is, however,
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not exempt from controversies: the results strongly rely upon
the specifics of the model, namely, the gauge, the choice of the
dipole radiation form, the molecular orbital (MO) symmetry
and degree of alignment, etc. (see [3–11]).

One step forward in the extraction of molecular structural
features is provided by the so-called laser-induced electron
diffraction (LIED) [12–14] technique. Here, the recolliding
electrons, elastically scattered off the molecular ion, contain
information about the multicenter nature of the target that
can be easily extracted from the measured photoelectron
spectra. Currently, LIED has been used to successfully recover
structural information from diatomic and other polyatomic
molecules with subangstrom spatial resolution. LIED is based
on the above-threshold ionization (ATI) processes. In ATI
an electron may directly depart from the molecular target
and contribute to the lower-energy region ATI spectrum;
this process is termed direct tunneling. On the other hand,
the laser-ionized electron might return to the vicinity of the
molecular parent ion, driven by the still present laser electric
field, and rescatter, thereby gaining much more kinetic energy.
This highly energetic electron could excite the remaining
ion or even cause the detachment of another electron(s) (for
a comprehensive description of these processes within the
framework of the SFA and Feynman’s path-integral approach,
see, e.g., [15]).
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The viability of LIED as a self-imaging technique—the
probe is a molecular electron that is extracted from the same
target it images—has been already established in a series of
contributions [16–19]. The aim is to gain insight about the
electronic structure of complex molecular targets interpreting
the energy spectra and angular distribution of ATI electrons.
Specifically, the high-energy region of the ATI spectra, which
is governed by the rescattering process, is particularly sensitive
to the structure and features of the target. In other words,
the rescattered electron has acquired knowledge about the
target it rescattered off, and hence allows extracting structural
information.

The study of the structure of complex systems, such as
molecules, atomic clusters, and solids, using the ATI spectra
is a well developed area of research. In this regard, ATI
from the simplest molecular systems, i.e., diatomics, is one
the most widely studied processes. Usually, theoretical ap-
proaches can be divided in two main groups: those based
on a fully quantum-mechanical description, that rely upon
on the numerical solution of the time-dependent Schrödinger
equation (TDSE), and approximate methods based on the SFA
and similar quasiclassical approaches. We should mention,
however, that the solution of the TDSE within the so-called
single active electron (SAE) approximation is only viable
for the simplest diatomic molecules, e.g., H2

+, H2, and D2.
These quantum-mechanical results so far largely focused on
the discrepancies between the length and velocity gauge
outcomes [20], the influence of the internuclear distance in
the interference patterns [21], or how the molecular alignment
[13,22–26] affects the ATI photoelectron or HHG spectra.
Finally, the importance of the residual Coulomb interaction
and quality of the continuum electron wave function was
also assessed [27,28]. Even though the TDSE provides the
most accurate and complete description of the underlying
physics behind ATI and LIED, its numerical integration is
very expensive computationally speaking. Furthermore, the
TDSE in its full dimensionality can currently not be solved
for complex molecular targets and multielectron systems.
Additionally, it is still not possible to model the time evolution
of molecular systems with the required temporal resolution.
Thus, approximate descriptions such as the SFA and related
methods play a fundamental role in the adequate description
of the more complex instances of LIED and ATI. Similarly,
the SFA approach is instrumental in the interpretation of HHG
molecular tomography.

We already presented a general theory for symmetric di-
atomic molecules in the SAE approximation that, among other
features, allows adjusting both the internuclear separation and
molecular potential in a direct and simple way [29]. Such
approach relies upon an analytic approximate solution of the
TDSE and is based on a modified version of SFA. Using
that approach, we were able to find expressions for direct
and rescattered electron transition amplitudes from two-center
molecular systems. In addition, our model directly underpins
different underlying physical processes (see, e.g., [29–31]).
Two important advantages of our theory are that (i) the dipole
matrix elements are free from nonphysical gauge and coordi-
nate system-dependent terms—this is achieved by adapting the
coordinate system, in which SFA is performed, to the center
from which the corresponding part of the time-dependent wave
function originates—and (ii) we are able to write both the
direct and rescattering transition amplitudes in an analytical

form, only involving one-dimensional and two-dimensional
time integrals, respectively.

Before proceeding, we would like stress once more the
essence of our approach. SFA in the formulation of Lewenstein
et al. [32] is an approximate method to solve the TDSE,
in which the contributions of all excited bound states are
neglected, whereas continuum-continuum scattering processes
are treated in the systematic perturbative way. In the zeroth
order, dynamics (quasiclassical action) of electrons is the
same as for Volkov electrons. In the first order, momentum
changing electron scattering processes in the presence of the
laser field are included. But, the matrix elements for the
dipole transition and for the continuum-continuum transition
are calculated using the exact ground-state wave function and
exact continuum states, corresponding to outgoing electrons
of a fixed outgoing momentum. These wave functions form
an orthonormal, although not complete (due to the exclusion
of the excited bound states), set. In particular, continuum
states in such approach “know” about the spatial position
and structure of the target in question: an atom, a molecule,
or a solid state. For technical reasons, in many applications
plane waves are used to describe the continuum states—many
researches associate that with the standard SFA approach.
For us it is an additional approximation, which might lead
to unnecessary problems in calculations. Plane waves form
themselves an orthonormal basis, and thus are not orthogonal to
the ground state. This fact causes the appearance of unphysical,
and particularly large, contributions to the dipole moment
matrix elements. In [31] we have illustrated this in the context
of diatomic molecules and we have also presented some
comparisons of our approach with the TDSE—we refer the
reader to the discussion therein.

We emphasize that our proposed theory of adapting the
coordinate system in multicenter targets is better than the stan-
dard SFA, in which plane waves are used. This is the case
especially if the target size is large, but it is also true when the
typical internuclear distances near the equilibrium are small.
We checked that spurious terms, appearing due to the lack of
orthogonality between the ground state and continuum plane
waves, are of the same order as the nonspurious contributions.
This does not mean, obviously, that the standard SFA applied to
diatomic molecules, using a single coordinate system, centered
at the center of the molecule, as studied in [24,33], is of no
worth. It gives the same results for the quasiclassical actions,
and the same information about the quasiclassical trajectories,
in particular the novel one connecting two different centers.
Therefore, the most important exponential part of the formulas
is the same, but the prefactors may substantially differ.

In the present paper we build on the theory presented in [29],
namely, (a) extending the approach to three-center molecular
systems and (b) including a more accurate description of the
molecular ground state. For (b) a linear combination of atomic
orbitals (LCAO), obtained from chemical software suites, is
used to model the molecular high-occupied molecular orbital
(HOMO). In principle, our approach is capable to manage any
basis set, but in order to keep the formulation as analytical as
possible we employ throughout the paper a STO-3G basis set.

This paper is organized as follows. In Sec. II, we present the
formulas for the three-center molecular system ATI transition
amplitudes for both direct and rescattered electrons. In Sec. III
we describe how to obtain the bound-free dipole transition
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FIG. 1. A general three-center molecular system aligned at a θ

angle with respect to the laser field polarization. The red dashed line
defines the molecular axis (see text for details).

matrix element, with the molecular ground state approximated
as a LCAO and using a STO-3G basis set. Details of the
calculation of the rescattering electron states and the matrix
elements that describe the continuum-continuum process are
provided in an analytic form. We use the transition matrix
elements obtained in the previous sections (Secs. II and III)
in Sec. IV to compute photoelectron spectra for diatomic
and triatomic molecules. Here, the numerical results retrieved
using LCAO approach are compared with those obtained
employing the nonlocal short-range (SR) potential. Finally, in
Sec. VI, we summarize the main ideas, present our conclusions,
and give a brief outlook.

II. THEORY OF ATI FOR A THREE-CENTER
MOLECULAR SYSTEM

To obtain the transition probability amplitudes for a tri-
atomic molecule within the modified strong-field approxima-
tion (MSFA), we extend the analysis presented in our previous
works [29–31]. To this end, we start solving the TDSE for a
molecular system of three independent atoms, as is shown in
Fig. 1, under the influence of an intense and short laser pulse
E(t), linearly polarized along the z axis.

Our molecular system is defined by a relative position vector
R = R3 − R1. We consider the general case of a molecule with
different atoms placed at R1 = [0,R

2 sin( α
2 + θ ),R

2 cos( α
2 +

θ )], R2 = 0, and R3 = [0, − R
2 sin( α

2 − θ ),R
2 cos( α

2 − θ )],
where α and θ are the angles between the external atoms and
the one formed by the molecular axis and the laser electric
field polarization, respectively (see Fig. 1). The molecular axis
is defined starting at the origin and bisecting the α angle. A
model defined in this way is able to accommodate both linear
and angular molecules. For the case of linear configurations
α = 180◦. Additionally, our approach allows one to study both
fixed and randomly oriented molecules (for details see, e.g.,
[29–31]).

In general, as the molecular nuclei are much heavier than
the electrons and the laser pulse duration is shorter than the
nuclei vibration and rotational dynamics, we fix the nuclei
positions and neglect the repulsive interaction between them.
Further, throughout the formulation we consider the SAE
approximation.

A. Generalized SFA: Transition probability amplitudes

We will work in the tunneling regime where our MSFA
becomes valid [32,34–38]. We assume that the atomic potential
V (r) does not play an important role in the electron dynamics
once the electron is freed and moving in the laser continuum.
Following these observations, we further consider that (i) only
the ground, |0〉, and continuum, |v〉, states are taken into
account in the interaction process; (ii) there is no depletion of
the ground state (Up < Usat); and (iii) the continuum states are
approximated by Volkov states—in the continuum the electron
is considered as a free particle entirely moving driven by the
laser electric field. For a more detailed discussion of the validity
of the above statements see, e.g., [29–32,38].

Based on assertions (i) and (ii), we propose a final state, that
is a superposition of three atomic states as

|�(t)〉 = eiIp t
3∑

j=1

[
|0j 〉 +

∫
d3v bj (v,t)|v〉

]
, (1)

constructed as a coherent superposition of ground, |0〉 =∑3
j=1 |0j 〉, and continuum, |v〉, states [32,38]. The subscript

j = 1,2,3 refers to the positions R1, R2, and R3 of each atom
in the three-center molecule, respectively.

The prefactor eiIp t represents the phase oscillations which
describe the accumulated electron energy in the ground state
(Ip = −E0 is the ionization potential of the molecular target,
with E0 the ground-state energy of the three-center molecular
system). Atomic units are used throughout this paper unless
otherwise stated.

Solving the TDSE that governs all the laser-molecule
interactions we find individual equations for the transition
amplitudes bj (v,t) as

ḃj (v,t) = −i

(
v2

2
+ Ip − Rj · E(t)

)
bj (v,t) + iE(t) · dj (v)

+ E(t) · ∇vbj (v,t)

−iE(t) ·
∫

d3v′ bj (v′,t) g(v,v′). (2)

Notice that in Eq. (2) we included a correction depending on
the relative position of each of the atoms Rj . This adjustment
allows us to build matrix elements free of nonphysical gauge
and coordinate system-dependent contributions (see [29,31]
for more details).

The first term on the right-hand side of Eq. (2) represents the
phase evolution of the electron in the oscillating laser electric
field. Here the linear term on Rj is introduced within the cor-
rection of the continuum-continuum transition matrix element
G(v,v′) = 〈v|(r − Rj )|v′〉 that relies upon the scattering states
|v〉 and |v′〉 as

G(v,v′) = i ∇vδ(v − v′) − Rj δ(v − v′) + g(v,v′). (3)
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With the second term of Eq. (2) we define the bound-
free transition matrix element: dj (v) = −〈vp|(r − Rj )|0j 〉 =
−〈vp|r|0j 〉 + Rj 〈vp|0j 〉.

The first two terms on the right-hand side of Eq. (3) are
associated to events where the laser-ionized electron is accel-
erated by the laser electric field without probability of returning
close to any of the ion cores and rescatters. The last one,
the rescattering transition matrix element g(v,v′), accounts for
all the continuum-continuum processes concerning the entire
molecule. Thus, in g(v,v′) the residual Coulomb potential has
to be taken into account. In this sense it can be written as a
sum of components representing each rescattering channel on
the molecule. The second term of Eq. (3) then reads as

g(v,v′) = 〈vp|(r − R1)|δv′
1〉 + 〈δv1|(r − R1)|v′

p〉

+ 〈vp|(r − R2)|δv′
2〉 + 〈δv2|(r − R2)|v′

p〉

+ 〈vp|(r − R3)|δv′
3〉 + 〈δv3|(r − R3)|v′

p〉. (4)

B. Direct transition amplitude

To find the direct transition amplitude we use perturbation
theory over g(v,v′) in order to solve the partial differential
equation Eq. (2). The zeroth-order solution b0(v,t) corresponds
to the direct transition amplitude describing processes where
the laser-ionized electron goes to the continuum and never re-
turns to the vicinity of the molecule, i.e., there is no rescattering
with the remaining molecular ion. Therefore, b0(v,t) in terms
of the canonical momentum p = v − A(t) can be written as

b0(p,t) = i
3∑

j=1

∫ t

0
dt′ E(t ′) · dj [p + A(t ′)]

× exp[−i Sj (p,t,t ′)]. (5)

Equation (5) has a direct physical interpretation: it can
be understood as the sum of all the ionization events that
occur from the time t ′ to t in the entire molecule. Then,
the instantaneous transition probability amplitude of an
electron at a time t ′, at which it appears in the continuum
with momentum v(t ′) = v − A(t) + A(t ′) = p + A(t ′), is
defined by the argument of the time integral in Eq. (5) [note
that A(t) = − ∫ t E(t ′)dt ′ is the associated vector potential].
Furthermore, the exponent phase factor in Eq. (5) stands for
the “semiclassical action” and reads as

Sj (p,t,t ′) = Rj · [A(t) − A(t ′)] + S(p,t,t ′), (6)

that defines a possible electron trajectory from the birth
time t ′, at position Rj , until the “recombination” one t ;
S(p,t,t ′) = ∫ t

t ′ dt̃{[p + A(t̃)]2/2 + Ip} is the well-known
semiclassical action.

C. Rescattering transition amplitude

On the other hand, the first-order solution b1(v,t) refers to
an electron that, once ionized at a particular center, has a certain
probability of rescattering with each of the remaining ions
(including the one from which it was laser ionized). In order to
find the first-order correction, i.e., the transition amplitude for
the rescattered photoelectrons b1(v,t), we set now g(v,v′) �= 0
in Eq. (2) and use the zeroth-order solution. The rescattering

transition amplitude reads as

b1,jj ′ (p,t) = −
∫ t

0
dt ′

∫ t ′

0
dt′′

∫
d3p′

× E(t ′) · gjj ′ [p + A(t ′),p′ + A(t ′)] exp [−iSj ′ (p,t,t ′)]

× E(t ′′) · dj [p′ + A(t ′′)] exp [−iSj (p′,t ′,t ′′)]. (7)

Notice that we have a three-center molecule where ion-
ization and rescattering processes can take place at each of
the individual atoms. In this sense we can distinguish between
(i) j = j ′, the local rescattering processes, which are “spatially
localized” since the electron undergoes a local rescattering with
the same atomic core from which it was born, and (ii) j �= j ′,
for the nonlocal and cross ones, involving transition between
two atoms.

The total rescattering transition amplitude, containing in-
formation about all the possible rescattering scenarios, is then
formed by nine terms b1(p,t) = ∑3

j,j ′=1 b1,jj ′ (v,t): three local
terms and six nonlocal and cross terms.

Equation (7) has a clear physical interpretation. As expected
the rescattering transition amplitude contains two exponential
factors, each representing the electron excursions in the laser
continuum. The last factor in Eq. (7), exp [−iSj (p′,t ′,t ′′)],
represents the accumulated phase of an electron born at the
time t ′′ in Rj until it rescatters at time t ′. In the same
way exp [−iSj ′(p,t,t ′)] defines the accumulated phase of the
electron after it rescatters at a time t ′ to the “final” one t , when
the electron is “measured” at the detector with momentum p.
Furthermore, the quantity E(t ′′) · dj [p′ + A(t ′′)] is the prob-
ability amplitude of an emitted electron at the time t ′′ that
has a kinetic momentum of v′(t ′′) = p′ + A(t ′′). Finally, the
term E(t ′) · gjj ′ [p + A(t ′),p′ + A(t ′)] defines the probability
amplitude of rescattering at time t ′.

The rescattering transition amplitude defined in Eq. (7)
is a multidimensional highly oscillatory integral: a two-
dimensional (2D) time integral embedded in a three-
dimensional (3D) momentum integral. As a way to reduce
the computational cost we shall employ the stationary phase
method to partially evaluate it. We only take the contributions
to the momentum integral at the saddle or stationary points p′

s ,
which are obtained from the equation ∇p′S(p′)|p′

s
= 0. The lat-

ter equation implies p′
s = − 1

τ

∫ t ′

t ′′ A(t̃)dt̃ , where τ = t ′ − t ′′ de-
fines the excursion time of the electron in the laser continuum.

Therefore, applying the standard saddle-point method to
the 3D momentum integral we obtain an expression for
rescattering transition amplitude b1,jj ′ (p,t) as

b1,jj ′ (p,t) = −
∫ t

0
dt ′

∫ t ′

0
dt′′

(
π

ε + i(t ′−t ′′)
2

) 3
2

× E(t ′) · gjj ′ [p + A(t ′),p′
s + A(t ′)]

× exp [−iSj ′ (p,t,t ′)] E(t ′′) · dj [p′
s + A(t ′′)]

× exp [−iSj (p′
s ,t

′,t ′′)]. (8)

Here, we have introduced an infinitesimal parameter ε,
small but nonzero, to avoid the divergence at t ′ = t ′′. The
character of this not integrable singularity and the simple
method to handle it has been pioneered in [32]. For more
information see the discussion in [30].
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The total photoelectron spectra at the end of the laser pulse
tF, |b(p,tF)|2, is then a coherent superposition of both the direct
b0(p,tF) and rescattered b1(p,tF) transition amplitudes, i.e.,

|b(p,tF)|2 = |b0(p,tF) + b1(p,tF)|2,
= |b0(p,tF)|2 + |b1(p,tF)|2

+ b0(p,tF)b∗
1(p,tF) + c.c. (9)

III. TRANSITION MATRIX AMPLITUDES CALCULATION

We aim to employ two different models to calculate the total
photoelectron spectra of molecular systems, namely, (i) model
A, in which we employ a separable nonlocal SR potential
to calculate both the bound and scattering states, as well as
the bound-free and continuum-continuum matrix element, and
(ii) model B, in which the initial ground state is modeled as
an LCAO and a nonlocal SR potential is used to compute the
scattering states and the continuum-continuum matrix element.
The bound-free transition matrix element is then obtained
employing an LCAO for the bound part and a nonlocal SR
potential scattering state for the continuum part.

A. Bound states and dipole transition matrix element: Nonlocal
SR potential

To obtain the bound and rescattering states we propose to
use a separable nonlocal SR potential as

V (p,p′) = −γ ′√
(p2 + 
2)(p′2 + 
2)

3∑
j=1

e−iRj ·(p−p′). (10)

This potential describes the interaction between the active
electron and each of the nuclei of the molecule, and depends on
the their positions Rj . The parameters γ ′ and 
 are constants
related with the shape of the ground state (for a more detailed
description see [29–31,38]).

The stationary Schrödinger equation for the molecule in
absence of the laser field in momentum representation reads
as follows:

p2

2
�0SR (p) − γ ′√

p2 + 
2

3∑
j=1

e−iRj ·pϕ̌j = E0�0SR (p),

(11)

where E0 denotes the energy of the bound state and E0 =
−Ip. Defining a new set of variables ϕ̌j = ∫ d3p′�0SR (p′)eiRj ·p′

√
p′2+
2

we obtain the bound states that can explicitly be written as

�0SR (p) = γ ′ (ϕ̌1e
−iR1·p + ϕ̌2e

−iR2·p + ϕ̌3e
−iR3·p)√

p2 + 
2
(

p2

2 + Ip

) . (12)

The exact values of the variables ϕ̌j are determined by
solving an eigenvalues problem (see [29,31] for more details)
where ϕ̌1 = ϕ̌3 = ( I2

I1−I3
)ϕ̌2.

Once we obtain the bound states, the dipole transition matrix
element dSR(p0) can then be computed as

dSR(p0) =
3∑

j=1

dSRj
(p0) = −2i MA(p0)

×
[

I2

I1 − I3
(e−iR1·p0 + e−iR3·p0 ) + 1

]
,

(13)

where M is a normalization constant and A(p0), I1, I2, and I3

are the same as those defined in [31]. Similarly, we can write
the dipole transition matrix for the two-center system (see the
Appendix for more details), defined as a sum over each of the
two atoms placed at Rj , with j = 1,2 [29].

B. Scattering waves and the continuum-continuum transition
matrix element

To obtain the scattering states we follow the same procedure
as in the previous sub-section. Let us consider a scattering
wave �p0 (p), with asymptotic momentum p0, as a coherent
superposition of a plane wave and an extra correction:

�p0 (p) = δ(p − p0) +
3∑

j=1

δ�Rj p0 (p). (14)

This state has an energy E = p2
0/2. Moreover, after some alge-

bra and substituting the nonlocal SR potential, the correction
then results in the following:

δ�Rj p0 (p) = −2γ ′ e−iRj ·p√
p2 + 
2

(
p2

0 − p2 + iε
)

⎡
⎣ eiRj ·p0√

p2
0 + 
2

+ ϕ̌′
j

⎤
⎦,

(15)

where the variables are defined by ϕ̌′
j = ∫ d3p′eiRj ·p′

δ�p0 (p′)√
p′2+
2

.

Notice that ε is another infinitesimal parameter to avoid the
divergence at the “energy shell,” p2 = p2

0. This singularity is
avoided due to the finite spread of the involved wave packets. In
the numerical calculations we smooth this singularity, allowing
ε to be of the order of 1 (see [29,30] for more details).

To obtain the explicit form of ϕ̌′
j we need to solve an

eigenvalues problem for the scattering states (similar to the
procedure employed with the bound states). For our three-
center molecular system the total scattering wave function
can also be written as a composition of three functions, each
centered at R1, R2, and R3. Explicitly, we then have

δ�R1p0 (p) = − D11(p0) e−iR1·(p−p0) − D12(p0) e−iR1·p + iR2·p0 − D13(p0) e−iR1·p + iR3·p0√
p2 + 
2

(
p2

0 − p2 + iε
) , (16)

δ�R2p0 (p) = −D0(p0) e−iR2·(p−p0) − D12(p0) e−iR2·p + iR1·p0 − D12(p0) e−iR2·p + iR3·p0√
p2 + 
2

(
p2

0 − p2 + iε
) , (17)
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and

δ�R3p0 (p) = −D11(p0) e−iR3·(p−p0) − D12(p0) e−iR3·p + iR2·p0 − D13(p0) e−iR3·p + iR1·p0√
p2 + 
2

(
p2

0 − p2 + iε
) . (18)

In here the total correction to the scattering state is δ�p0 (p) =
Mscat

∑3
j=1 δ�Rj p0 (p), where Mscat = 1

(1+I ′
11)2+(1+I ′

11)I ′
13−2I ′

12
2

is a normalization constant. The integration “constants” for the
scattering states in Eqs. (16)–(18) have the following functional
form:

D11(p0) = 2γ ′√
p2

0 + 
2

[
(1 + I ′

11)2 − I ′
12

2

1 + I ′
11 − I ′

13

]
, (19)

D0(p0) = 2γ ′√
p2

0 + 
2
[1 + I ′

11 + I ′
13], (20)

D12(p0) = 2γ ′√
p2

0 + 
2
[−I ′

12], (21)

and

D13(p0) = 2γ ′√
p2

0 + 
2

[
I ′

12
2 − I ′

13(1 + I ′
11)

1 + I ′
11 − I ′

13

]
, (22)

where

I ′
jj ′ = −2γ ′

∫
d3p

ei(Rj −Rj ′ )·p

(p2 + 
2)
(
p2

0 − p2 + iε
) . (23)

The case of diatomics can be obtained from �2−p0 = δ(p −
p0) + ∑2

j=1 δ�2−Rj p0 (p) (see the Appendix and [29] for more
details).

Once the rescattering states are completely defined we pro-
ceed to the evaluation of the continuum-continuum transition
matrix element using Eq. (4). We thus have

g(p1,p2) = Mscat

3∑
j=1

[i∇pδ�Rj p2 (p) − Rj δ�Rj p2 (p)]|p1

+Mscat

3∑
j=1

[i∇pδ�Rj p1 (p) − Rj δ�Rj p1 (p)]∗|p2 .

(24)

For our three-center molecular system we get an inde-
pendent transition matrix element for each of the possible
rescattering scenarios, i.e.,

g11(p1,p2) = Q11(p1,p2) e−iR1·(p1−p2),

g22(p1,p2) = Q0(p1,p2) e−iR2·(p1−p2),

g33(p1,p2) = Q11(p1,p2) e−iR3·(p1−p2),

g12(p1,p2) = Q12(p1,p2) e−iR2·p1+iR1·p2 ,

g21(p1,p2) = Q12(p1,p2) e−iR1·p1+iR2·p2 ,

g13(p1,p2) = Q13(p1,p2) e−iR3·p1+iR1·p2 ,

g31(p1,p2) = Q13(p1,p2) e−iR1·p1+iR3·p2 ,

g23(p1,p2) = Q12(p1,p2) e−iR3·p1+iR2·p2 ,

g32(p1,p2) = Q12(p1,p2) e−iR2·p1+iR3·p2 , (25)

where the Qjj ′ , are defined by

Q11(p1,p2) = −iMscat [D(p2)C1(p1,p2)

−D∗(p1)C2(p1,p2)], (26)

Q0(p1,p2) = −iMscat [D0(p2)C1(p1,p2)

−D∗
0(p1)C2(p1,p2)], (27)

Q12(p1,p2) = −iMscat [D12(p2)C1(p1,p2)

−D∗
12(p1)C2(p1,p2)], (28)

Q13(p1,p2) = −iMscat [D13(p2)C1(p1,p2)

−D∗
13(p1)C2(p1,p2)], (29)

and

C1(p1,p2) =
⎡
⎣ p1

(
3p2

1 − p2
2 + 2
2

)
(
p2

1 + 
2
) 3

2
(
p2

2 − p2
1 + iε

)2

⎤
⎦,

C2(p1,p2) =
⎡
⎣ p2

(
3p2

2 − p2
1 + 2
2

)
(
p2

2 + 
2
) 3

2
(
p2

1 − p2
2 − iε

)2

⎤
⎦. (30)

All the equations obtained in this subsection are consistent
with the atomic and diatomic cases presented in previous pub-
lications (see [29,30]). In fact, all the cases are identical when
the internuclear distance goes to zero, R → 0. The verification
of this limit for the direct processes is straightforward. Here,
the phase factor becomes the well-known semiclassical action
S(p,t,t ′) and the transition amplitude exactly has the same
dependency as for an atom, if we replace the atomic matrix
elements on it. For the rescattering events, on the other hand,
we have to neglect the contribution of the nonlocal and cross
terms (j �= j ′) in Eq. (8) and follow the same procedure as in
the case of the direct processes. In the following sections we
obtain the exact dependency of the rescattered matrix elements
that also describe the atomic case when R → 0.

C. Bound states and the dipole transition matrix element: The
molecular orbital as a LCAO

In this section we are going to calculate the molecular bound
states as a LCAO of Gaussian-like functions. Our formulation
takes full advantage of the GAMESS package [39,40]. For sim-
plicity we use a STO-3G basis set, but note that our approach
is quite general and other basis sets could be employed.

Let us define the bound state of the molecular system as

�0LCAO (p) =
3∑

j=1

5∑
i=1

Gj (i)j (i)(p), (31)
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where the index j represents the number of the atoms in
the molecule. Furthermore, the index i accounts for the
different atomic orbitals (AOs). Throughout our paper we
model molecular systems using only i = 1 → 1s, 2 → 2s, and
3,4,5 → 2px,y,z states, but states with other quantum numbers
could be implemented.

Furthermore, Gj (i) is a constant defining the weight of
each atom orbital. In our case we consider the HOMO and
the particular values are obtained using GAMESS. Finally, the
functions j (i)(p) define the atomic orbitals. For instance, an
atomic orbital based on s states can be written as

j (s)(p) = e−iRj ·p 1

23/2

3∑
n=1

Cn;j (s)

ζ
3/2
n;j (s)

e
−p2

4ζn;j (s) , (32)

while one for 2p states can be written as

j (2pr )(p) = −i pr e−iRj ·p 1

25/2

3∑
n=1

Cn;j (pr )

ζ
5/2
n;j (pr )

e
−p2

4ζn;j (pr ) . (33)

Here the index r can take the value x, y, or z. The coefficients
Cn;j (s,pr ) and ζn;j (s,pr ) are obtained using, for example, a
Roothaan-Hartree-Fock optimization scheme (see [39,40] for
more details).

The dipole transition matrix element within this model, that
describes the transition of the electron from the bound to the
continuum state, then reads as

dLCAO(p0) = −
3∑

j=1

5∑
i=1

Gj (i){i∇p j (i)(p)|p0

− Rj j (i)(p0)}, (34)

where depending on the states’ character the gradient results
in

i∇p j (1s)(p)|p0 = Rj j (1s)(p0) − i p0

2 ζn;j (s)
j (1s)(p0) (35)

for the s states and

i∇p j (2pr )(p)|p0 = Rj j (2pr )(p0) − i p0j (2pr )(p0)

2 ζn;j (2pr )

+ δj (2pr )(p0) r̂, (36)

where

δj (2pr )(p0) = e−iRj ·p0
1

25/2

3∑
n=1

Cn;j (2pz)

ζ
5/2
n;j (2pz)

e
−p2

0
4ζn;j (2pz ) , (37)

for the p states.
Using the above equations we are able to obtain analyt-

ical expressions for the molecular dipole transition matrix
elements. As was noted in this section, we introduced the
formulation particularized for three-center molecular sys-
tems. Nevertheless, and for completeness, we present in the
next subsections expressions for two prototypical two-center
molecules, O2 and CO, as well. Additionally, our three-center
examples will be based on the CO2 and CS2 molecules.

1. O2

The bound state (HOMO) for the O2 molecule oriented on
the y axis, written as a LCAO, reads as

�0−O2 (p) = G1(2pz)1(2pz)(p) + G2(2pz)2(2pz)(p). (38)

The inset of Fig. 3(b) illustrates what Eq. (38) looks like
in position space. Furthermore, the dipole transition matrix
element can be computed from

dO2 (p0) = −
2∑

j=1

Gj (2pz) {i∇p j (2pz)(p)|p0

− Rj j (2pz)(p0)}, (39)

where explicitly we then have

dO2 (p0) = G1(2pz)

{
i p0

1(2pz)(p0)

2 ζn;1(2pz)
− δ1(2pz)(p0) k̂

}

+G2(2pz)

{
i p0

2(2pz)(p0)

2 ζn;2(2pz)
− δ2(2pz)(p0) k̂

}
.

(40)

The parameters G(1,2)(2pz) and ζn;1/2(2pz) are obtained setting
the molecule in its equilibrium position via an optimization
procedure using GAMESS [39,40].

2. CO

For the case of the CO molecule the bound state is a
composition of 1s, 2s, and 2p states described by

�0−CO(p) =
2∑

j=1

[Gj (1s)j (1s)(p) + Gj (2s)j (2s)(p)

+Gj (2pz)j (2pz)(p)]. (41)

The dipole transition matrix element reads as

dCO(p0) =
2∑

j=1

[
Gj (1s)

{
i p0

j (1s)(p0)

2 ζn;j (1s)

}

+Gj (2s)

{
i p0

j (2s)(p0)

2 ζn;j (2s)

}

+Gj (2pz)

{
i p0

j (2pz)(p0)

2 ζn;j (2pz)
− δj (2pz)(p0) k̂

}]
.

(42)

3. CO2

For the case of CO2 the bound state is

�0−CO2 (p) =
3∑

j=1

[Gj (2px )j (2px )(p) + Gj (2pz)j (2pz)(p)].

(43)

A plot of the HOMO for this molecule, using Eq. (43),
is shown in Fig. 2(a), where we consider the molecule in
equilibrium—each of the C-O bond lengths is set to 2.2 a.u.
(1.164 Å), and oriented perpendicular to the laser field (linearly
polarized along the z axis).
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FIG. 2. Sectional view of the constructed HOMO, presented in the z-y plane, calculated using the LCAO method, �0LCAO (r). (a) CO2 and
(b) CS2 (see the text for details).

The dipole transition matrix element can be explicitly
written as

dCO2 (p0) =
3∑

j=1

[
Gj (2px )

{
i p0

j (2px )(p0)

2 ζn;j (2px )
− δj (2px )(p0) î

}

+Gj (2pz)

{
i p0

j (2pz)(p0)

2 ζn;j (2pz)
− δj (2pz)(p0) k̂

}]
.

(44)

4. CS2

The CS2 bound state within the LCAO approach reads as

�0−CS2 (p) =
3∑

j=1

[Gj (2px )j (2px )(p) + Gj (2pz)j (2pz)(p)

+ Gj (3px )j (3px )(p) + Gj (3pz)j (3pz)(p)].

(45)

As in the previous case, we consider the CS2 molecule
in equilibrium—each of the C-S bond lengths is set to

2.92 a.u.(1.545 Å), and oriented perpendicular to the laser
field (polarized along the z axis). A plot of the CS2 HOMO
is depicted in Fig. 2(b).

Finally, the dipole transition matrix element for the CS2

molecule reads as

dCS2 (p0) =
3∑

j=1

[
Gj (2px )

{
i p0

j (2px )(p0)

2 ζj ;n(2px )
− δj (2px )(p0) î

}

+Gj (2pz)

{
i p0

j (2pz)(p0)

2 ζj ;n(2pz)
− δj (2pz)(p0) k̂

}

+Gj (3px )

{
i p0

j (3px )(p0)

2 ζj ;n(3px )
− δj (3px )(p0) î

}

+Gj (3pz)

{
i p0

j (3pz)(p0)

2 ζj ;n(3pz)
− δj (3pz)(p0) k̂

}]
.

(46)

After obtaining both the dipole and the continuum-
continuum transition matrix elements it is then possible to

FIG. 3. (a) Total, direct, and rescattering contributions to the photoelectron spectra as a function of the final momentum. The HOMO of
the molecule is computed using the SR potential. (b) The same as in panel (a) but now the HOMO is modeled using a LCAO. The HOMOs for
both cases are shown as insets. In all the cases, we used an O2 molecule oriented perpendicular to the laser field polarization (see text for more
details).
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FIG. 4. Total, direct, and rescattering contributions to the photoelectron spectra, as a function of the electron energy in Up units, for the CO
molecule. (a) Model A. (b) Model B. We consider the CO molecule is in equilibrium, the internuclear distance is set to R = 2.13 a.u. (1.127 Å),
and the molecule is oriented parallel to the laser field polarization (see text for more details).

compute Eqs. (5), (8), and (9) to obtain the direct, the rescat-
tering, and the total photoelectron transition amplitudes. We
stress that our model only involves, in the worst case scenario,
the numerical calculation of a 2D integral, the rest of the
expressions being written in terms of fully analytical functions.

IV. RESULTS AND DISCUSSION

In this section, we compute the ATI spectra generated from
different molecular systems using two different approaches,
namely, models A and B as described in Sec. III. We compare
the ATI spectra for four different molecular systems in order
to establish similarities and differences. Furthermore, the
splitting of the contributions to the photoelectron spectra helps
us to distinguish which of the direct and rescattering scenarios
is relevant in the different energy and momentum regions.

In all the simulations we use an ultrashort laser pulse with a
central frequency ω0 = 0.057 a.u. (wavelength λ = 800 nm), a
sin2 envelope shape, and Nc = 4 total cycles (this corresponds
to a full width at half maximum of 5.2 fs). The carrier-envelope
phase (CEP) is set to φ0 = 0 rad and the time step is set to
δt = 0.02 a.u. The numerical integration time window is then
t : [0,tF], where tF = NcT0 ≈ 11 fs and T0 = 2π/ω0 denote the
final “detection” time and the cycle period of the laser field,
respectively.

A. Results on diatomic molecules: O2 and CO

In this section, we apply our analytical model using the
equations presented in the Appendix to calculate the photo-
electron spectra of two prototypical diatomic systems: O2 and
CO. The numerical integration of the photoelectron spectra
by means of Eqs. (5) and (8) has been performed via a
rectangular rule with particular emphasis on the convergence
of the results. As the final momentum distribution, Eq. (9), is
“locally” independent of the momentum p, |b(p,t)|2 can be
computed concurrently for a given set of p values. We have
optimized the calculation of the whole transition amplitude,
|b(p,t)|2, by using the OpenMP parallel package [41]. The final
momentum photoelectron distribution, |b(p,t)|2, is computed
in a 1D-momentum line along pz and a 2D-momentum pz-py

plane.

1. O2 molecule

The computation of the photoelectron spectra was per-
formed by using Eqs. (9), (A3), and (A8) for the case of model
A. Here we set 
 = 1 and γ = 0.08 a.u. in our nonlocal SR
potential in order to match the dioxygen ionization potential
obtained with GAMESS, Ip = 0.334 a.u for the singlet state.
Next, in the case of the calculation using model B, we use
Eqs. (9), (40), and (A8).

FIG. 5. Direct contributions to the CO photoelectron spectra (in logarithmic scale) as a function of the electron energy, in Up units, calculated
by using (a) model A and (b) model B. We consider the CO molecule is in equilibrium, the internuclear distance is set to R = 2.13 a.u. (1.127 Å),
and the molecule is oriented parallel, aligned at 0◦ with respect to the laser field polarization (see text for more details).
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FIG. 6. (a) Representation of the CO molecule aligned at 0◦ with respect to the laser field polarization. (b) Total ATI photoelectron spectra
(in logarithmic scale) for a 2D-momentum plane (pz,py). (c, d) The same as in panels (a, b) but for the molecule aligned at 180◦ with the laser
field polarization.

In Fig. 3(a) we present the results using model A. Here, we
use the nonlocal SR potential to obtain the ground state and
the bound-free dipole matrix element. This kind of potential
only supports s states as we can see in the inset of Fig. 3(a). In
contrast, model B gives a more accurate description of the O2

molecular orbital (MO) [see inset Fig. 3(b)].
The shape of the MO introduces noticeable differences

in the different contributions of the photoelectron spectra.
Figures 3(a) and 3(b) show the main contributions to the full
final photoelectron spectra, namely, the total |b(p,t)|2 (red solid
line), the direct |b0(p,t)|2 (dashed with points blue line), and the
rescattering |b1(p,t)|2 (black dashed line) terms [see Eq. (9)].
The black solid lines define the two cutoffs defined by 2Up and
10Up. As we can infer from the latter figures the two models
show slightly different behaviors. In the case of model A, that
describes the HOMO as a superposition of two one-electron 1s

AOs, Fig. 3(a), we see an overestimation of the direct processes.
This fact could be caused by the kind of SR potential used to
get the molecular ground state. This SR potential does not
properly describe the attraction force felt by the electron both
when it is bound and in the continuum. In this way this electron
could “escape” more easily from the ionic core and becomes
a “direct electron.”

Results from the two models also show some similarities:
stronger oscillations for small values of the electron mo-
mentum followed by a rapid decrease of the ATI yield (at

|pz| � 1.0 a.u.), a plateau where the amplitude remains almost
constant, and the fact that both approaches end up with an
abrupt cutoff around the same value of |pz| � 2.1 a.u. [38,42].

We can also observe from Figs. 3(a) and 3(b) that the
differences start to disappear for high electron energies, where
the spectra are dominated by the rescattered electrons. This is
so because the core potential plays a minor role in this energy
region. Furthermore, our model captures the CEP asymmetry
as well: electrons with positive final momentum are more
influenced by the laser field polarization and this creates a
stronger interference pattern.

2. CO molecule

In the CO calculation we set the parameters of our nonlocal
SR potential to 
 = 1 and γ = 0.09 a.u., in order to match
the ionization potential obtained with GAMESS, Ip = 0.44 a.u.
As we already mentioned, this nonlocal SR potential only
describes MOs as a composition of s states [see Fig. 3(a) inset].
On the other hand, the main advantage to using GAMESS is
that it describes the MO much more accurately. Additionally,
with GAMESS we have the possibility to easily model more
complex molecules. The MO of the CO molecule obtained
from GAMESS is a superposition of s and p states. We consider
the CO molecule is in equilibrium, the internuclear distance is
set to R = 2.13 a.u. (1.127 Å), and the molecule is oriented
parallel to the laser field polarization.
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FIG. 7. Rescattering contributions to the ATI photoelectron spectra (in logarithmic scale) for a 2D-momentum plane (pz,py) calculated by
using model B. The CO molecule is at equilibrium, R = 2.12 a.u., and oriented antiparallel (θ = 180◦) to the laser field polarization. (a) Local
term of the atom on the left. (b) Local term of the atom on the right. (c) Nonlocal and cross term with ionization from the left. (d) Nonlocal and
cross term with ionization from the right.

Figure 4 shows the main contributions to the final pho-
toelectron spectra for the CO molecule: the total |b(p,t)|2
(red solid line), the direct |b0(p,t)|2 (dashed with points
blue line), and the rescattering |b1(p,t)|2 terms (black dashed
line) [see Eq. (9)]. In Fig. 4(a) we display the results us-
ing model A, while the ones from model B are shown in
Fig. 4(b).

A clear observation from these plots is that each term
contributes to different regions of the photoelectron spectra,
i.e., for electron energies Ep � 2Up the direct term |b0(p,t)|2
dominates the spectrum and, in contrast, it is the rescattering
term |b1(p,t)|2 that wins in the high-energy electron region.
Both photoelectron spectra show the expected two cutoffs
defined by 2Up and 10Up (black dashed lines) which are
ubiquitously present in both atomic and diatomic molecular
ATI [38,42].

One of the main differences between the two models is that
the total maximum yield amplitude is two orders of magnitude
higher in the case of model B than in model A. Besides this
contrast the dynamic ranges of the spectra are quite similar:
about ten orders of magnitude until the end of the signal. Here
we only show the electrons moving to the “right,” i.e., with
positive momentum, but as in the above case of O2 the total
spectra show CEP asymmetries.

The two spectra show some remarkable similarities; both
have a deep minimum around 5Up, more pronounced for the
model A case [Fig. 4(a)], from which the yield of the direct
processes starts to decrease. The contribution of the direct
processes is negligible for energies �7Up, from which the
spectra are dominated by the scattering processes. The two
CO spectra show, in general, more similarities than in the O2

case; this is due to the nature of the CO HOMO: in the CO
molecule the MO is a composition of not only 2p but also

1s AOs and our SR potential is able to partially include the
contribution of the latter.

In order to have a more complete picture of the underlying
mechanisms we present in Fig. 5 the different direct processes
contributions, |b0(p,t)|2, to the total ATI spectra. In Fig. 5(a)
we show the split of the direct processes obtained using model
A, whereas in Fig. 5(b) we depict the results using model B.
The first observation in this comparison arises from the fact that
the contributions from the atom on the left (|b0,1(p,t)|2), i.e.,
carbon, and the atom on the right (|b0,2(p,t)|2), i.e., oxygen,
are different in the case of model B [Fig. 5(b)]. The amount of
photoelectrons ionized from the carbon atom (pink circle line)
is much larger than the one from the oxygen (yellow dashed
line). This is in agreement with the shape of the CO HOMO, see
Fig. 6(a), where the electronic cloud around the carbon atom is
much bigger. The same effect is observed for the rescattering
terms (not shown), where the total local term is dominated by
the local processes coming from the carbon atom.

In the case of the calculations using model A those differ-
ences are not so pronounced [see Fig. 5(a)]: we can observe
that the contributions of both atoms are equal in amplitude
and shape. This is so because the bound state obtained from
the SR potential does not properly describe the CO HOMO:
this potential is unable to take into account the heteronuclear
character of the CO molecule and describes its HOMO similar
to the one shown in the inset of Fig. 3(a).

Considering the nuclear asymmetry features discussed be-
fore we next study the differences in the ATI spectra for
the molecule aligned parallel (0◦) or antiparallel (180◦) with
respect to the laser field polarization. The results of a 2D
calculation, for both orientations and using the LCAO within
model B, are presented in Fig. 6. Figures 6(a) and 6(c) show
a sketch of the molecular orientation, superimposed over
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FIG. 8. CO2 molecular ATI spectra (in logarithmic scale) as a function of the electron energy in Up units. (a) Spectra calculated using model
A. (b) Spectra computed using model B. In both calculations the CO2 molecule is oriented perpendicular to the laser polarization (see text for
more details).

the MO, formed by a combination of s and p states. Here
we can see that for the case of the CO molecule aligned
parallel (antiparallel) the carbon atom is on the “left” (“right”),
while the oxygen atom is on the “right” (“left”). Furthermore,
Figs. 6(b) and 6(d) depict the total ATI spectra for both the
parallel and antiparallel cases, respectively.

The total ATI spectra presented in Figs 6(b)–6(d) show the
typical CEP asymmetry, but surprisingly any features related
to the heteronuclear character of the CO molecule appear
to be missing: the two ATI spectra, the one obtained for the

molecule at 0◦ [Fig. 6(b)] and the one for 180◦ [Fig. 6(d)],
look almost identical.

In order to get a more detailed description of the CO
ATI spectra presented in Figs. 6(b)–6(d), in Fig. 7 we plot
the contribution of the rescattering processes to the total
ATI. On the other hand, the direct contributions show the
expected behavior: a symmetry inversion. In this case the major
contribution also comes from the carbon atom on the right
(|b0,2(p,t)|2), whereas the direct ionization from the oxygen
atom, on the left (|b0,1(p,t)|2), is much smaller.

FIG. 9. Different rescattering processes contributions to the CO2 molecular ATI spectra (in logarithmic scale) as a function of the electron
energy in Up units. (a–c) Spectra calculated using model A. (b–d) Spectra computed using model B. In both calculations the CO2 molecule is
oriented perpendicular to the laser polarization (see text for more details).
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FIG. 10. 2D-total ATI photoelectron spectra (in logarithmic scale) for the CO2 molecule as a function of the (pz,py) electron momenta
computed using model B. (a) The molecule is oriented parallel to the laser field polarization. (b) The same as in panel (a), but the molecule is
oriented perpendicular to the laser field polarization (see text for more details).

In Figs. 7(a) and 7(b) we present the local processes
contributions |b1,11(p,t)|2 and |b1,22(p,t)|2, respectively. On
the other hand, Figs. 7(c) and 7(d) depict the cross and nonlocal
contributions, namely, |b1,12(p,t)|2 and |b1,21(p,t)|2. In all
the cases the molecule is aligned 180◦ with the laser field
polarization, i.e., the oxygen atom is on the left, while the
carbon atom is on the right. Interestingly, for the case of 0◦
we obtain the same plots, but with the terms interchanged,
i.e., now the higher contribution comes from the carbon atom
now located on the left at the position R1. This is the same
asymmetry feature observed in the direct terms [see Fig. 5(b)].
The heteronuclear character of the molecule can now be seen
in the local and rescattering components but, as we observed,
not in the total photoelectron spectra. This fact could be related
to the compensation of the MO differences when the direct and
rescattering terms are coherently added.

B. Results on triatomic molecules: CO2 and CS2

In this section we are going to extend our analysis to more
complicated molecular systems, formed now by three atomic
centers. We start our analysis computing the ATI for the CO2

molecule. We present the different contributions, direct and
rescattering, to the total photoelectron spectra and discuss their
differences and similarities. We use next the CS2 molecule
as another three-center prototypical system. For this case we
also calculate the different processes contributing to the total
spectra and make a similar study to the one done for CO2.
In this way we are able to highlight both the discrepancies

and coincidences between these two comparable molecular
systems.

1. CO2 molecule

We consider a CO2 molecule in equilibrium, i.e., the two
oxygen atoms are separated a distance R = 4.4 a.u. (2.327 Å)
with the carbon atom located in the midpoint. The ionization
potential of the outer electron predicted by GAMESS is Ip =
0.39 a.u. The corresponding parameters of our nonlocal SR
potential to obtain this Ip are 
 = 0.8 and γ = 0.1 a.u.

In Fig. 8 we present the ATI spectra, computed by using
both model A [Fig. 8(a)] and model B [Fig. 8(b)]. Here, we
show the different contributions: the total |b(p,t)|2 (solid red
line), the direct |b0(p,t)|2 (dashed with points blue line), and the
rescattering |b1(p,t)|2 (black dashed line) ones for each model.
In both models we see that the direct processes contribute
only in the low-energy region of the spectra, Ep � 6Up, being
negligible at high energies, where the rescattering terms are
dominant. In this case we also observe an overestimation of
the direct terms and a difference of four orders of magnitude
in the total yield between model A [Fig. 8(a)] and model B
[Fig. 8(b)]. Besides this difference in amplitude, the shapes of
the spectra are quite similar: the change between direct and
rescattering dominance is around the same energy (∼5Up).
However, we want to focus our attention on the high-energy
part of the ATI spectra, Ep � 4Up. As can be seen, the two
models show the same number of minima at around the same
positions ≈5Up, ≈8Up, and ≈11Up. In order to investigate
if these minima are generated by the interference between the

FIG. 11. Total photoelectron spectra (in logarithmic scale) as a function of the electron energy in Up units. (a) Calculated by using model
A. (b) Calculated using model B. In both models the CS2 molecule is at equilibrium R = 5.86 a.u. (3.1 Å). The peak laser intensity used in this
calculation is set to I0 = 1 × 1014 W cm−2 (see text for more details).
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FIG. 12. 2D-total ATI photoelectron spectra (in logarithmic scale) for the CS2 molecule as a function of the (pz,py) electron momenta
computed using model B. (a) The molecule is oriented parallel to the laser field polarization. (b) The same as in panel (a), but the molecule is
oriented perpendicular to the laser field polarization (see text for more details).

local and nonlocal+cross terms in Fig. 9 we split the different
rescattering processes’ contributions.

As can be seen in Figs. 9(a) and 9(b), both local (green line
with circles) and nonlocal and cross contributions (cyan line
with crosses) have almost the same yield over all the electron
energy range and only minor differences are visible. As a con-
sequence the minima appear to be generated by the destructive
interference between electrons tunnel ionized and rescattered
in the same ion core. In Figs. 9(c) and 9(d), we present a split
of the local processes, namely, |b1,11(p,t)|2 (dotted yellow line
with downward-pointing triangle) and |b1,33(p,t)|2 (solid thick
purple line). As we can see, the contribution from the O atoms,
placed at the end of the molecule, is equal in amplitude and
shape in both models. In contrast, the contribution of the C
atom, placed at the origin, is almost negligible (not shown in
the figure).

Regarding the deep minima, if we take a look at Figs. 9(c)
and 9(d), we see that they are present in the independent
contributions |b1,11(p,t)|2 and |b1,33(p,t)|2. This reinforces the
hypothesis that internal interferences, inside of the atoms, are
responsible for those minima. We can also observe that, in
the case of model A, the local contributions (right and left)
add up to enhance the total local contribution. In the case
of model B, those two local contributions interfere with each
other, leading to a total contribution with lower amplitude and
exactly the same shape. This is a direct consequence of both
the bound-state wave function and the HOMO shape.

Let us next analyze the effect of the molecular orientation
on the ATI spectra. In order to do this we compute the final
photoelectron spectra for the molecule oriented parallel and
perpendicular with respect to the laser field polarization. In
both cases we use model B and in Fig. 10 we show the results.

In the parallel configuration, θ = 0◦ [Fig. 10(a)], we can
see the typical interference pattern with deep minima located
at around pz = ±1.4 a.u. The position of these minima is in
agreement with the second minimum predicted by the two slit
interference formula [29] for two radiant points separated by
a distance R = 2.2 a.u, i.e., only the separation between the
oxygen and the carbon atoms. In contrast, in the perpendicular
configuration, θ = 90◦ [Fig. 10(b)], there is no trace of two-
center interferences.

2. CS2 molecule

For the CS2 molecule we focus our attention on the de-
pendency of the total photoelectron spectra on the molecular
orientation. We perform calculations using both models for
three different orientation angles. The parameters used in the
nonlocal SR potential are 
 = 0.71 and γ = 0.099 a.u.. With
these values, we match the ionization potential Ip = 0.32 a.u
of the CS2 molecule obtained with GAMESS. Additionally, the
CS2 HOMO is modeled in model B as a combination of only
2p AOs.

We consider the molecule oriented at θ = 0◦ (light green
dashed line), θ = 45◦ (medium green solid line with right-
pointing triangle), and θ = 90◦ (dark green solid line with
circles) with respect to the laser field polarization and we also
include an averaged-ATI spectra (solid black line) over these
three orientations.

The calculations using model A [Fig. 11(a)] show only
minor dissimilarities in shape and amplitude for the three
different orientations. The main differences appear in the
low-energy part, where the spectra depict different yields and
the positions of the interference minima change. In this case
the most favorable orientation, i.e., the one that gives the
highest yield, is θ = 90◦ (dark green solid line with circles),
i.e., the molecule is oriented perpendicular to the laser field
polarization. This result is in agreement with our previous
publication [31], where the HHG for a three-center molecule,
CO2, shows a similar behavior.

For the ATI spectra obtained using model B [Fig. 11(b)],
we observe that the behavior is completely the opposite: in the
perpendicular case (dark green solid line with circles) the total
yield drops by more than three orders of magnitude and it is
the parallel orientation (light green dashed line) that dominates.
Additionally, the differences between the three orientations are
now more visible. We could argue then that model B is not only
more accurate in the MO description but also more sensitive
to the molecular orientation.

In order to discuss differences and similarities with the CO2

case, in Fig. 12 we present 2D-total photoelectron spectra for
a CS2 molecule oriented at θ = 0◦ [Fig. 12(a)] and θ = 90◦

[Fig. 12(b)], with respect to the laser field polarization.
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The results obtained show the sensitivity of our model to the
molecular orientation and the presence of interference minima
now for the two orientations [this is in clear contrast to the CO2

case, where for the perpendicular orientation, Fig. 10(b), there
are not fingerprints of interferences]. Furthermore, we observe
that, for the parallel case, Fig. 12(a), the interference minima
are placed for fixed pz values, i.e., parallel to the py axis, while
for the case of θ = 90◦ these minima are for fixed py values,
i.e., parallel to the pz axis. These features are related to the
shape of the CS2 HOMO, that is inherited in the molecular
bound-free matrix element.

V. CONCLUSIONS AND OUTLOOK

Before concluding, we would like to discuss with more
detail the similarities and differences between the generalized
SFA, used in this paper, and the independent-atom model
(IAM) used in diffraction theory and recently also in LIED (see,
for example, [43]). At first glance, both approaches have some
similarities. However, there are also significant differences.
In LIED, the IAM is used only for returning electrons with
sufficiently high energies and large scattering angles, whereas
in the present theory there is no such restriction.

The IAM is based on the following basic assumptions.
(1) It neglects the bound-states structure of the target.
(2) Electron rescattering is treated here in a process similar

to scattering by laboratory prepared electrons. Electrons are
described thus as incoming plane waves (alternatively wave
packets of superimposed plane waves).

(3) Scattering on the target in many cases may be calculated
using the Born perturbation theory but, if needed, can be
calculated using more sophisticated approximations of the
scattering theory, or even calculated exactly. The IAM is quite
precise for electrons of high energies (say 5–10Up).

(4) It focuses on high-energy angle-resolved photoelectron
spectra of molecules in strong fields.

(5) The IAM does not consider the dynamics of the initial
tunneling process and, thus, does apply to the electrons un-
dergoing direct ionization. In fact, it is well known that the
description of these active directly ionized electrons (normally
valence electrons) by the IAM is quite inaccurate.

In contrast, generalized SFA is a systematic approximate
solution of the TDSE, based on the following assumptions.

(1) Like the IAM, it neglects the bound-states structure of
the target, except for its ground state.

(2) It treats electron continuum-continuum transitions (scat-
tering) in a perturbative way. In the zeroth order, the electron’s
dynamics is described by the Volkov action.

(3) The generalized SFA treats the laser field nonperturba-
tively.

(4) Electrons’ dynamics in the continuum is similar to that
corresponding to plane waves, as in the IAM, but here we deal
with the Volkov waves, dressed in the laser field.

(5) In the zeroth order, the generalized SFA (known also as
the Keldysh-Faisal-Reiss model [34–36]) describes quite well
direct tunnel ionization of electrons that never return to the
target; they have energies between zero and 2Up. Typically,
good agreement with the TDSE and experiments is achieved
for electrons of energies larger than Ip. For the intensities

considered here we have Ip � Up and this corresponds to
electrons with energies, say Up < E < 2Up.

(6) In the first order, the generalized SFA treats the rescat-
tering processes perturbatively with respect to the continuum-
continuum matrix element, describing scattering on the target
in the presence of the laser field. The IAM might be more
precise in treating the scattering itself, but is less accurate in
treating the laser field effects, which are evidently important
for electrons of moderate energies, say around 2Up.

(7) Rescattered electrons may reach energies up to typically
10Up (although this depends on laser polarization, etc.).

(8) Each contribution to the spectrum and angular distri-
bution of electrons has quasiclassical interpretation in terms
of quasiclassical (complex) trajectories (for the foundations
of HHG and ATI see [32,38], respectively). Contributions
corresponding to individual trajectories are calculated in
the generalized SFA very precisely (see [15]). The fragile
interference between the different trajectories, leading for
instance to the rings in the ATI and involving both direct and
rescattered electrons, is also reproduced by the generalized
SFA qualitatively [38], but not so well quantitatively. In most of
the experiments, these interference effects, however, are often
averaged out by the spatial distribution of intensity in the pulse
and temporal effects.

In short, the advantage of the generalized SFA over the
IAM is that SFA can handle electrons of energies E > Up �
Ip and includes the laser dressing exactly. The disadvantage
is that the rescattering process is treated in the laser-dressed
Born approximation, whereas in the IAM it can be tackled, in
principle, exactly.

In a similar vein, it is also important to remark that the gener-
alized SFA has a limited inclusion of Coulomb effects (though
it can be extended in the direction of the Coulomb-Volkov
approximation [44]), and this can limit the approximation’s
accuracy to some extent. The inclusion of Coulomb effects
into descriptions of ionization is an active area of research [45]
through a wide array of methods, including, e.g., the Coulomb-
corrected SFA [46] and the analytical R-matrix theory [47–49],
but generally speaking the more Coulomb effects are in-
cluded the less analytical and manageable the theory becomes,
requiring either “shotgun” trajectory approaches [46] or an
increased overhead on the description of recollisions [48]. In
the generalized SFA we present here, we prioritize the handling
of multicenter systems within an analytical framework, which
can then be adapted to include Coulomb effects once the atomic
picture becomes clearer.

Summarizing, we presented a quasiclassical approach that
deals with molecular ATI within the SAE approximation. Our
model could be considered as a natural extension to the one
introduced in [29,30]. The focus of the present paper is on
triatomic molecular systems, although the extension to more
complex systems appears to be straightforward.

First, we have shown our approach is able to capture the
interference features ubiquitously present in every molecular
ATI process. As was already described, the cores of our model
are the saddle-point approximation and the LCAO. One of the
main advantages of our approach is the possibility to disen-
tangle, in an easy and direct way, the different contributions
to the total ATI. This is particularly important for complex
systems, where there exists a large amount of direct and
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rescattering “scenarios” that otherwise would be impossible to
extricate.

Second, we establish a comparison using two different
ground states, one that uses a nonlocal SR potential, model A,
and the other based on the LCAO, model B. While both models
allow us to formulate the ATI in a semianalytical way, the
latter (model B) gives a more accurate description of the MO.
Nevertheless, we proved that, even when the former (model A)
predicts an overestimation of the direct processes, the shape
and the spectra features are well reproduced. Additionally,
model B appears to be the adequate platform to investigate
much more complex systems. For instance, the modeling of the
DNA basis, formed by around 12 atoms, seems to be perfectly
feasible. This will be the object of future investigations.
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APPENDIX: TWO-CENTER
SYSTEMS—BOUND-CONTINUUM AND RESCATTERING

TRANSITION MATRIX ELEMENTS

In this Appendix we present the equations to calculate
the bound-continuum and the rescattering matrix elements
for a diatomic molecule. In this case we set n = 2 where
n determines the number of atoms, in such a way to distin-
guish this formulation from the one presented for three-center
systems.

Let us first recall the expression for the bound state of a
diatomic system obtained in [29], i.e.,

�2−0SR (p) = M2 e−iR1·p√
(p2 + 
2)

(
p2

2 + Ip

) + M2 e−iR2·p√
(p2 + 
2)

(
p2

2 + Ip

) , (A1)

where the normalization constant M2 is

M2 = 1

2

[
2π2

(2Ip − 
2)2

{
2 e−R


R
− 2 e−R

√
2Ip

R
− (2Ip − 
2)e−R

√
2Ip√

2Ip

+ (
√

2Ip − 
)2√
2Ip

}]−1/2

. (A2)

Following the definition in Eq. (13), with now n = 2, we have

d2−SR(p0) =
2∑

j=1

d2−SRj
(p0) = −2i M2A(p0) {e−iR1·p0 + e−iR2·p0}, (A3)

where A(p0) is defined as

A(p0) = −p0

(
3p2

0 + 2Ip + 2
2
)

(
p2

0 + 
2
) 3

2
(
p2

0 + 2Ip

)2
. (A4)

Using this last equation we have completely defined the direct transition amplitude for a two-center system by inserting Eq. (A3)
in Eq. (5).

For the calculation of the rescattering and the total transition amplitudes we need to obtain the scattering states and the
rescattering transition matrix elements. In this way, the scattering state reads as

�2−p0 = δ(p − p0) +
2∑

j=1

δ�2−Rj p0 (p), (A5)

where

δ�2−R1p0 (p) = D2 − 1(p0) e−iR1·(p − p0) − D2−2(p0) e−iR1·(p + p0)√
p2 + 
2

(
p2

0 − p2 + iε
) , (A6)

δ�2−R2p0 (p) = D2 − 1(p0) e−iR2·(p − p0) − D2 − 2(p0) e−iR2·(p + p0)√
p2 + 
2

(
p2

0 − p2 + iε
) . (A7)

033415-16



ABOVE-THRESHOLD IONIZATION IN MULTICENTER … PHYSICAL REVIEW A 97, 033415 (2018)

Finally, let us obtain the explicit expressions for the rescattering transition matrix elements for diatomics, g2−jj ′ :

g2−11(p1,p2) = Q2−1(p1,p2) e−iR1·(p1−p2), g2−12(p1,p2) = Q2−2(p1,p2) e−iR2·p1+iR1·p2 ,

g2−22(p1,p2) = Q2−1(p1,p2) e−iR2·(p1−p2), g2−21(p1,p2) = Q2−2(p1,p2) e−iR1·p1+iR2·p2 , (A8)

where

Q2−1(p1,p2) = i[D2−1(p2)C1(p1,p2) − D∗
21

(p1)C2(p1,p2)] (A9)

and

Q2−2(p1,p2) = −i[D2−2(p2)C1(p1,p2) − D∗
2−2(p1)C2(p1,p2)]. (A10)

The functions in Eqs. (A9) and (A10) are defined as

D2−1(p0) = γ√
p2

0 + 
2

{
1 + I ′

1

I ′
2

2 − (1 + I ′
1)2

}
, D2−2(p0) = γ√

p2
0 + 
2

{
I ′

2

I ′
2

2 − (1 + I ′
1)2

}
, (A11)

I ′
1 = −2π2 γ
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∣∣ , (A12)
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and
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