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High-harmonic generation (HHG) has emerged as a pivotal process in strong-field physics, yielding extreme
ultraviolet radiation and attosecond pulses for a wide range of applications. Furthermore, its emergent connection
with the field of quantum optics has revealed its potential for generating nonclassical states of light. Here, we
investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while
using a Bloch-based solid-state description. Through the implementation of quantum operations based on the
measurement of high-order harmonics, we demonstrate the generation of nonclassical light states similar to those
found when driving atomic systems. These states are characterized using diverse quantum optical observables
and quantum information measures, showing the influence of electron dynamics on their properties. Additionally,
we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal
orientation, while also assessing their sensitivity to changes in driving field strength. This paper provides insights
into HHG in semiconductors and its potential for generating nonclassical light sources.
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I. INTRODUCTION

Since the first observations of the high-harmonic genera-
tion process (HHG), in the last quarter of the 20th century
[1-3] strong-field physics has undergone tremendous progress
[4,5]. Nowadays, HHG stands as one of the primary mech-
anisms behind extreme ultraviolet (XUV) radiation sources
[6,7] and attosecond pulse generation [8,9]. It has found
diverse applications in nonlinear XUV optics [10-17], at-
tosecond science [5,18], molecular tomography [19], and
high-resolution spectroscopy [20-23].

In HHG, an input driving laser field within the infrared
(IR) regime interacts with a target, resulting in the emission
of coherent (possibly also incoherent [24]) radiation with
wavelengths significantly shorter than those of the incom-
ing driving field. A hallmark of HHG spectra is a plateau
of frequencies spanning from the infrared up to the XUV
regime, followed by a sharp decay at a given cutoff fre-
quency. The specific features of the generated radiation are
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profoundly influenced by target properties, leading to distinct
characteristics depending on whether the radiation is gener-
ated from atomic [18,25], molecular [26], solid-state systems
[27-29] or nanostructures [30]. Here, our focus centers on
the HHG process within semiconductor materials. Unlike the
conventional case of atoms, HHG in bulk matter shows a
linear increase of the cutoff frequency with the field’s strength
[27,29] (in contrast to the quadratic trend in atoms [8]), a
reduced dependence of the harmonic yield on the field’s el-
lipticity [27,29,31,32], and a strong dependence on the crystal
orientation [33,34]. Furthermore, the advantage of performing
HHG in small (= 500 um) semiconductor samples [27,35]
promises to extend the aforementioned applications to un-
precedented scales.

High-harmonic generation in solid-state systems has also
demonstrated significant potential towards quantum technol-
ogy applications [36,37]. Research has revealed that driving
HHG in strongly correlated materials can serve as a tool for
detecting topological order [38—44] and for witnessing phase
transitions [22,45-50]. In the context of the latter applica-
tion, HHG was used to distinguish between different phases
in high-T; superconductors [23], which represent one of the
main platforms used for developing quantum information

©2024 American Physical Society
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science applications [51,52]. Concerning the direct use of
semiconductors in the context of quantum information sci-
ence, one of its main usages is as nonclassical light sources
[53-59]. In this direction, the emergent connection between
quantum optics and strong-laser field physics [60] has shown
that, by means of HHG processes in atomic systems, one can
generate nonclassical states of light [37,61-64] with inten-
sities strong enough to drive nonlinear processes in matter
[65], as well as massive frequency-entangled states [66—68].
Notably, these findings extend beyond HHG processes [69]
in atomic systems [70]. Specifically, for the case of solids,
recent studies have demonstrated that the effect of elec-
tronic acceleration within the valence band could potentially
yield analogous outcomes [71] as those in Refs. [61-63,66].
Furthermore, studies under a Wannier-Bloch description high-
lighted the possibility of having entanglement between the
electronic and field degrees of freedom [72].

While these studies in solid-state systems have provided
essential insights about the generation of nonclassical states of
light after HHG in this kind of media, they are either limited
to specific electron dynamics within the solid [71], or involve
simplifications on the interaction with the material, restricting
the analysis to a limited number of Wannier sites and neglect-
ing dephasing effects [72]. These limitations can be addressed
by employing a Bloch-based description of the solid system,
where the semiconductor Bloch equations (SBEs) [42,73,74]
offer a straightforward framework for describing dephasing
times and the incorporation of many-body effects.

In this paper, we explore the utilization of HHG in semi-
conductor materials to generate nonclassical light states using
a Bloch-based description of the solid system, alongside a
quantum mechanical description of the electromagnetic field.
Specifically, we focus on ZnO and analyze its interaction
with a linearly polarized field aligned along different crys-
tal directions, examining how varying dephasing times and
field strengths affect the final results. By introducing condi-
tioning operations into the HHG process, analogous to those
described in Refs. [61-63,66], we demonstrate the generation
of nonclassical states of light. These states are characterized
using various quantum optical observables and quantum in-
formation measures, highlighting the influence of the different
electron dynamics on their features. Specifically, we observe
two nonexclusive indications of nonclassical behaviors: the
presence of Wigner function negativities and non-negligible
entanglement between the electromagnetic field modes, each
of which is observed under two distinct regimes.

The text is organized as follows. In Sec. II we provide
the theoretical background, beginning with a semiclassical
description of HHG in semiconductors, followed by our quan-
tum optical analysis. Section III summarizes the main findings
of the paper, where we compute the Wigner function of the
generated light states and assess other quantum information
measures such as the fidelity and linear entropy. Finally, our
conclusions are presented in Sec. IV, where we discuss our
results and outline potential avenues for future research.

II. THEORETICAL DESCRIPTION

The theoretical analysis presented in this paper considers
excitations over a ZnO material driven by an intense lin-

early polarized laser field along various crystal orientations.
Specifically, we focus on polarizations along the I'-M and
I'-A directions, which we will subsequently denote as the x
and z orientations, respectively. Our ZnO modeling employs
a two-band, tight-binding model, ensuring that the subsequent
band-dispersion relations hold for the valence (v) and conduc-
tion (c) bands:

oo
E,k)= Y Y a cos(jkia), (1
i=x,y,z j=0
x .
E(k)=E,+ Y Y ol cos(jkiay, ©)
i=x,y,z j=0

where a; represents the lattice constant along the i direction,
E, stands for the band-gap energy at the I' point, and a,(h’ )l de-
notes the expansion coefficients for band m in the i direction.
These parameters are chosen in accordance with the seminal
works by Vampa et al. [75-77], and their specific values are
provided in Appendix A. However, in contrast to these works,
we do account for the k dependence of the transition matrix
elements between the conduction and valence bands, denoted
as d{)(k) = \/E,;/{2[E-(k) — E,(k)]?} (see, e.g., Ref. [78]),
where E, corresponds to the Kane parameter, varying with the
particular band under consideration. For ZnO, these parame-
ters are given by £, = E,, =0.355 a.u. and E,, = 0.479
a.u., as indicated in Refs. [79-82].

A. Semiclassical description

In this subsection, we provide a summary of the equa-
tions that delineate the HHG process in solid-state systems
within a semiclassical framework. Subsequently, we build
our quantum optical framework upon this foundation. Thus,
within the length gauge, and under the single-active electron
and dipole approximations, the Hamiltonian that characterizes
the interplay between the crystal and a (classical) intense laser
field is expressed as

ﬁsc(t) = ﬂcr + efiEq (1), 3)

where H,, represents the crystal Hamiltonian, modeled as pre-
viously specified, and E.(¢) characterizes the classical input,
linearly polarized, driving electric field, with e the electronic
charge. In the following, we divide the position operator 7;
into its interband and intraband components, whose matrix
elements in the Bloch basis {|¢k )}, with k denoting the
crystal momentum and m designating the associated band, are
given by (see, e.g., Ref. [73])

0 ’
(¢k,m|?i,tra|¢k’,l> == ih(sm,lﬁa(k -k )’ (4)

(Bl Pierl i 1) = e d%) (K)S(k — K). )

Thus, by considering this division, the Hamiltonian
reads as

I:isc(t) = I:icr + ef'i,traEcl(t) + e?i,terEcl(t)» (6)

such that the Schrodinger equation describing the dynamics of
the electronic system is given by

Ay (1))
ot

ih = He ()Y (1)). (7
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From the definitions in Eqs. (4) and (5), one can see
that in the crystal momentum representation this equa-
tion couples different values of k, which runs over a
continuum range of values. With the aim of simplifying
its analysis, we first introduce the unitary transformation
[ (2)) = eleAa®iiw/ly/ (1)), where Aq(2) is the classical vec-
tor potential, defined as E. (1) = —dAy/d¢t. Through this
transformation, our Schrodinger equation gets modified to

iha"”a/t(t” = [Au(t) + ehineOEaOIY' @), (8
where we have defined

I:Icr(t) = e—ieAc] (t)f‘,'.[m/hﬂcreieAcl(t)f’,;[m/h , (9)

;\'i,[er(t) = e*ieAd(t)?,-,[m/ﬁ;)_mereieAC] (t)?,-ylm/ﬁ. (10)

This transformation shifts our frame of reference to that of
the oscillating electron within the field, effectively allowing
us to operate within the frame of the canonical crystal mo-
mentum K. This momentum is defined as k = K + e&;A,(¢)
where &€; denotes the polarization direction, and remains a
constant of motion. Consequently, upon projecting our equa-
tions relative to a given |K, m), with m denoting the band, we
obtain

iﬁw = En(K+ e€Aa(1))bn(K, 1)

+ Y dOK 4 eEiAa()b (K, 1), (11)

I=c,v

Hence, the main advantage of working within this shifted
frame of reference is that the resulting differential equa-
tions become uncoupled in relation to K. In the asymptotic
limit + — oo, corresponding to the end of the pulse, it
coincides with the electron’s final crystal momentum. We
note that, within our description, the Berry connection terms
d) (k) are incorporated. However, for centrosymmetric ma-
terials, these terms vanish, as it happens with ZnO when the
driving laser field is linearly polarized along the I'-M direc-
tion [83].

From the system of differential equations defined in
Eq. (11), one can derive the SBEs [42,73,74] that delineate
the dynamics of the bands’ population, denoted as n,,(K, ¢) =
b, (K, 1)*b, (K, 1), and the coherences between them, repre-
sented as 7w (K, 1) = b,(K, t)*b.(K, t). These equations are
given as follows:

ihw = GmEcl(t)[dC(?(K + egiAcl(f))]*ﬂ(Ka 1)
+c.c., (12)
ihw - [sg(K +eEiha(t))

+ Ea(0)E (K + €A (1)) — ii]n(K, 1)
T

+ Eq()d D (K + EAa(t)w(K, 1), (13)

where we have defined 6, =1, 6. = —1, the band-gap
energy as &y(k) = E.(k) — E,(k), the difference between
the Berry connections of each band as Sg(‘)(k) Edﬁ?

(k) — d9(k), and the population difference between bands
as w(K, 1) =n,(K, 1) — n.(K, t). Additionally, we incorpo-
rate a phenomenological description of electron-electron and
electron-phonon couplings through the dephasing time 75 into
our equations. In the following, we will see how this parame-
ter influences the HHG spectrum.

The mechanism of HHG in semiconductors is typically
attributed to two distinct dynamics: intra- and interband
processes [27,35,75,84-86]. In the former, the emission of
radiation is often linked to electronic scattering within the
nonparabolic energy dispersion profile of a specific band,
commonly referred to as Bloch oscillations [87]. In contrast,
interband dynamics follow the three-step-like model of the
HHG mechanism, where (1) an electron-hole pair is created
through the promotion of an electron from the valence to
the conduction band, (2) the pair gets accelerated by the
field within their respective bands, and (3) the electron-hole
recombination occurs within the valence band, leading to the
emission of a photon whose frequency depends on the energy
difference between the bands [75,76]. The respective current
components giving rise to these effects are

Jitra = _etr([f'i,traﬁcr]b(t))’ (14)
. d. .
Jiter = ea[tr(ri,terp(t))]v (15)

where p(t) is a density matrix with populations and co-
herences given by n,,(K, ¢) and 7 (K, t), respectively, when
expanding p(f) in the canonical crystal momentum basis.

While these are generally regarded as the primary contrib-
utors to HHG emission in semiconductors, the mechanisms
underpinning this process have undergone extensive scrutiny
in the literature [73]. In the context of noncentrosymmet-
ric materials, where Berry connection terms are nonzero,
the anomalous current assumes a pivotal role [42,88-91],
giving rise to the imperfect recollision mechanism in solid-
state HHG [74,92]. Another contributing factor is commonly
known as the mixture current, which arises due to the interplay
between inter- and intraband operators [93], i.e., [ tas 7iter],
although its implications have remained largely unexplored
[73]. Consequently, our analysis of ZnO predominantly cen-
ters on the effects that the mechanisms outlined in Eqgs. (14)
and (15) exert on the quantum optical state after the HHG
process.

The influence of each current contribution presented in
Egs. (14) and (15) on the HHG spectrum, computed as
a)2|FT[j,-,ter + ji,m]|2, is illustrated in Fig. 1. The spectrum is
calculated for laser fields polarized along the I'-M [Figs. 1(a)
and 1(c)] and the I'-A [Figs. 1(b) and 1(d)] directions [94].
We observe that, in both cases, the interband contribution
(shown in orange) predominates over the intraband within
the nonperturbative regime. This regime is delineated between
the minimum and maximum band-gap energies for each solid
direction (vertical dashed lines). However, in the perturbative
region of the spectrum, below ming[&,(k)], a clear domi-
nance of one contribution over the other is not apparent.
Furthermore, it is noteworthy that incorporating finite dephas-
ing times yields to resolved harmonic peaks when 7 ~ 1 fs
[75,76] [Figs. 1(c) and 1(d)], along with reduced harmonic
conversion efficiencies. While the use of such small dephasing
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FIG. 1. High-harmonic generation spectra for laser fields polar-
ized linearly along distinct solid directions. The laser field features
a Gaussian envelope with a central wavelength A, = 3.25 um, field
strength of 0.5 V/A, and a duration of Ar &~ 96 fs (equivalent to nine
optical cycles). Specifically, for panels (a) and (c), we examine the
case of the I'-M direction, while for panels (b) and (d), we consider
the case of the I'-A direction. In panels (a) and (b), infinite dephasing
times are assumed, while in panels (c) and (d), a finite 7, = 1 fs is
employed, resulting in well-resolved harmonic peaks.

times has been common practice in these approaches, it has
remained a topic of controversy within the community [29].
In this context, various frameworks for describing the laser-
solid interaction can yield distinct insights. For instance, in
Ref. [95] the need for extremely short dephasing times was
circumvented by adopting a Wannier-based approach, where
long spatial trajectories interfere destructively.

B. Quantum optical description

In this section, we expand upon the previously outlined
description into the quantum optical domain. This involves
substituting the classical electric field E(¢) in Eq. (6) with
the electric field operator £ (r) and incorporating the free-field
Hamiltonian Hpeg. Consequently, the Hamiltonian that char-
acterizes the interplay between the crystal and the field, for
a single-active electron within the dipole approximation and
under the length gauge, can be expressed as

H(t) = Hy + efi B (t) + e oL (1) + Hiera- (16)

While our objective is to capture laser-matter interactions
involving electromagnetic fields of finite duration, which in-
herently necessitate encompassing the complete continuum
spectrum, for simplicity we focus on a discrete set of modes.
This discrete set spans from the central frequency w; of the
driving field, to the cutoff region of the harmonic spectrum,
defined as w, =gqcw, ie., w,=qw,:q=1,2,...,4c.
Consequently, we formulate the free-field Hamiltonian for
linearly polarized fields as Hyelq = ZZ;““I’“ hwq&;&q, where a,
(&;) represents the annihilation (creation) operator for the field
mode with frequency ¢. Similarly, we characterize the electric
field operator as

“
E@) = —if(t))_ glw)@] — a,), (17)

g=1

where 0 < f(r) < 1 is a dimensionless function accounting
for the laser field envelope. Here, g(w,) = £;\/hw,/(2¢)V)
is a factor arising from the expansion of the electric field
operator into the field modes [96-98] with £; a unitary vector
pointing in the direction along which the field is polarized,
€o the vacuum permittivity, and V the quantization volume.
Hereafter, we denote E (1) as the electric field operator compo-
nent along the i direction, i.e., E@)=e;- E(t), which aligns
with the polarization of the input driving field.

In this context, the initial state of the joint system is
given by

qe
= |¢ro) ® lar) Q) 10,). (18)

q=2

W (r =1o))

where the electron is initially located in the valence band with
crystal momentum ky. Concerning the quantum optical state,
the infrared driving mode is in a coherent state of amplitude
oy, while all the other modes are in a vacuum state. Further-
more, the dynamics of the composite system are described by
the Schrodinger equation

a'\g“)) = HO1W()), (19)

which in the interaction picture with respect to Hpeiq reads

7Y@

e [Hio(t) + efi B (1) + eFierE (1P (1)),

(20
where the electric field operator has gained an additional time
dependence, that is,

E@) = —lf(t)Zg(wq)(“ ol — e, 21

g=1

In Eq. (20), |¥@)) = e‘iﬁﬁeld’/hﬁl(aL)|\Il(t)), with
ﬁq (@) = exp[&Zoﬁ — aga] the displacement operator acting
on the electromagnetic field mode g [99—-101]. Additionally,
Hy (1) corresponds to the semicAlassical Hamiltonian presented
in Eq. (11), where E(t) = tr[E ()| W(to)) (W (2)]]-

Following a similar approach to the one employed when
transitioning from Eq. (7) to Eq. (8), we now introduce the
transformation

(1)) = pl¢Aa O+AW)Fia/ P (1)), (22)

where A(r) is the vector potential operator, which is defined
as E(t) = —dA(r) /0t. Thus, incorporating this definition into
Eq. (20) and considering terms up to first order with respect
to g(w,) (see Appendix B1), we arrive at

YO

e [He(t) + efier()(Ea(t) + E1))

- ieh71ﬁi,tra(t)A(t)]|\D,(t)>v (23)

where we additionally disregarded the influence of the mix-
ture current. Here, we defined 7;(t) as in Eq. (10), and
Vitra = [Fi.tra; H..], such that D; ra (1) 1s obtained as in Eq. (10)
upon the change 7; ¢ — Ui tra-

The first two terms on the right-hand side of Eq. (23)
contribute to the Hamiltonian that leads to the semiclassical
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evolution described by Eq. (8). Hence, the last transforma-
tion we introduce involves moving to the interaction picture
with respect to that term, meaning |A\Tl/(t)) = U (t, 1)V (1)),
where U (t, 1p) = Texp[—ij;; dtH(t)/h] with T being
the time-ordering operator and ﬁsc(t) = HA.,()+ efi erEci ().
Subsequently, we obtain

A (1))
ot

where %i,ler(t) = U;C(t, tO)f'i,ter(t)Usc(ts o) and ﬁi,tra(t) =

U;L (t7 tO)ﬁi,tra(t)Usc (t7 tO)-
A solution to this differential equation, for a two-band
model, can always be written as

o=y [

m=v,c

ih = [eFier(E() — ieh™ ' 0 AT (1)), (24)

dK|K, m)|®, (K, 1)), (25)

where |®,,(K, t)) = (K, m|¥(¢)) represents the quantum op-
tical state when the electron resides in band m with canonical
crystal momentum K. By considering terms up to first order
in g(wr) and accounting for the initial conditions, we derive
the subsequent expression for the quantum optical component
(see Appendix B2 for a detailed derivation):
. qe
[Py (K, 1)) ~ §(K — Ko)D(x, (K, 7,1%)) ® 10g),  (26)
g=1

D (K, 1)) ~ —%S(K ~Ko)

t
X / dt'D(x. (K, 1, ') M., (K, 1)

fo

de
x D, (K. ', 1)) XR) 10,). 7)
q=1
where K represents the initial crystal momentum of the elec-
tron. In these two expressions, we define @[X,-(K, t,ty)] =
[T {1 0D, [x V(K. 1, 1)1}, with ¢ (K.1,10) as a
phase factor arising from the use of the Baker-Campbell-
Hausdorff (BCH) formula [61-63,97,99] to express the
solution above, and where X,.(")(K, t,1p) is given by

1 ' er
XK, 1, 10) = ﬁg(wq)./ dt[- MEO(K, ©)f,(1)
fo

+ M (K, 1)F, (1)), (28)

where f,(t) = f(t)e’, Fy(t) = [ dtf,(t), and M"(K,1)
and I\;Ii(’t;a)(K, t) account for the transition matrix elements of
the operators ;A"",-,[er(t) and ﬁi,tra between states in bands i and j
(see Appendix B2), respectively, with M. , (K, ¢) in Eq. (27)
given by

MK, 1) = MS K DE@) + 7 MA@, (29)

Similar to the quantum optical description of strong-field
processes in atomic systems of Refs. [61-63,66,67], in solid
state, each electromagnetic field mode experiences a displace-
ment by an amount x,fq)(K,t,to). However, for solid-state
systems, this quantity is influenced by both the interband and
intraband dynamics of electrons. In the following, we aim

to examine the impacts of these dynamics following HHG
processes. To achieve this, we begin by reverting the trans-
formations conducted to arrive at Eq. (23). Yet, we continue
to work within the shifted and rotating frame of reference for
the quantum optical state, yielding

B (1)) = @O/ A (1 1) B(19)).  (30)

It is crucial to recognize at this point that, in Eq. (30), the
unitary transformation ¢/“A®)un/" introduces entanglement
between the canonical crystal momentum and the field modes,
given that 7; 4, is not diagonal with respect to K. Nonetheless,
in the discrete description we are using, where the field’s
envelope is accounted for using the weight function f(¢) in the
definition of the electric field operator, as shown in Eq. (17),
it becomes apparent that in the asymptotic limit # — oo when
the pulse concludes, A(r) — 0 (see Fig. 7 in Appendix B2).
In this regime, and for the discrete mode analysis we present
here, we get

(W (1)) = Ui (1, 10)| W (10)). 3D

As mentioned earlier, our focus lies in HHG, such that the
electron ends up in the valence band of the solid system. Ac-
cordingly, we restrict to this process by applying the projector
operator 13,) = de|K, v) (K, v|K, v to our state, and tracing
out the electronic degrees of freedom. Hence, we arrive at the
quantum optical state

4e
P (K. 1) = Dx,(Ko. 1.10)) Q) 10,).  (32)
g=1
similarly to what is found for atomic systems. It is worth
noting that, here, we have neglected contributions of the form
(K, v|Usc(t, 1)|K’, ¢) which are smaller compared to the cen-
tral one shown in the equation above [they scale as g(wg)],
but that introduce entanglement between the electron and field
degrees of freedom (see Appendix B2), as recently stated in
Ref. [72]. However, as shown in this paper, the amount of en-
tanglement observed in the case of ZnO was nearly negligible.
It is imperative to bear in mind, up to this point, that our
analysis has focused on the single-electron level. However,
the ground state of a semiconductor consists of a fully occu-
pied valence band, forming a Fermi sea where each electron
initially possesses a well-defined crystal momentum K and
interacts with other electrons. Notably, in the formulation of
the SBEs, many-body interactions are accounted for through
effective masses and couplings. Hence, within this framework,
we can treat each electron independently encompassing var-
ious initial values of K that span the entire Brillouin zone.
Consequently, we can extend our result in Eq. (32) to the
many-body regime as

¢
|, (1)) ~ ﬁ(Nz/dev(K,t,to)> ) 10,).

q=1

q(.
= D(X,(t, 1)) Q) 10,), (33)

q=1

where N, denotes the number of Brillouin zones excited by
the laser field. In our numerical analysis, we consider N, to
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be around 10°-107. However, it is crucial to note that this pa-
rameter’s value significantly relies on experimental conditions
such as the laser beam width, the alignment of the crystal lat-
tice relative to the field’s polarization, and the sample’s width
in cases where the HHG process occurs during transmission.

Additionally, and as shown in Fig. 1, dephasing effects
exert a pivotal influence on the final shape of the HHG
spectra. We anticipate that these effects will similarly im-
pact the generated light state. In this context, we incorporate
dephasing effects phenomenologically into the computed
displacements X,ﬂ")(K, t,ty) while calculating the matrix el-
ements M (K. ¢) and M;"" (K. t) in Eq. (28) [102]. This is
due to their dependence on the solution of the SBEs as detailed
in the previous subsection (see Appendix B2 for the detailed
expressions and a discussion about this matter).

III. RESULTS
A. Conditioning to HHG

In current experimental setups [61,65], the creation of
nonclassical light states hinges on conducting anticorrelation
measurements involving the part of the fundamental mode
and the produced harmonics [103,104]. From a mathematical
standpoint, our focus is on events where at least one photon
is generated in a harmonic mode (g # 1) while considering
the correlations that arise with the fundamental mode. In
mathematical terms, this involves the implementation of the
projective operation [63,66,67]

qe
Peona = 1 — (X) 104)(0,, (34)
g=1

which we refer to as conditioning to HHG operation. Applying
this operator to the state in Eq. (32) leads, up to a normaliza-
tion factor, to

qc qc
1Du(1)) = @) [t 10)) — EmEuv Q) 105),  (35)
q=1 q=1

where we define &R = (0] )_(U(q=1) (t,tp)) and E&yy =
Z; ,(0y] 29, 15)). The resultant state, following the
application of this conditioning operation, takes the form
of an entangled state encompassing all the harmonic
modes excited during the HHG process, as demonstrated in
Ref. [66]. However, in current experimental implementations,
this conditioning operation is executed by performing an
anticorrelation measurement involving a portion of the
outputting driving IR field and the generated harmonics
[61-63,103]. Mathematically, this operation equates to a
projection of the conditioned state in Eq. (35) with respect to
Z;Z |29t 1)), resulting in

1@y k() = |77V, 1)) — ErlEUV]*104=1), (36)

which is a superposition between two different coherent
states.

In the subsequent analysis, we investigate various char-
acteristics of the generated states, including the presence
of Wigner negativities, their fidelity in comparison to other
states, and the degree of entanglement between the field
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FIG. 2. Wigner function representations of the state in Eq. (36)
under various conditions. Each column corresponds to distinct values
of the dephasing time, 75, along with different orientations of the
applied linearly polarized laser field, specifically aligned with the
I'-M and I'-A directions. The first two rows focus individually on the
intraband and interband contributions, while the last row displays
their combined effect. The laser parameters used in this case corre-
spond to A, = 3.25 um, field strength of 0.5 V/A, and a duration of
At = 96 fs (equivalent to nine optical cycles).

modes. Our specific interest lies in understanding the influ-
ence of dephasing times and field strength on the computed
quantities, along with the contributions from interband and
intraband effects. As previously mentioned, we conduct this
examination using ZnO subjected to linearly polarized light,
aligned along different crystal directions, though our primary
focus is on the I'-M direction. The laser source we consider
has a Gaussian envelope, central wavelength A, = 3.25 um,
field strength ranging from 0.2 to 0.6 V/A, and a duration of
approximately At ~ 96 fs (equivalent to nine optical cycles).

B. Wigner function of the fundamental mode

In Ref. [61], it was demonstrated how the Wigner function
of the fundamental mode could be measured in the context of
HHG processes in atoms. This was achieved by employing
the conditioning approach, briefly skimmed at the end of
the preceding section, together with a homodyne detection
scheme [105]. In this paper, our objective is to explore how
the characteristics of solid-state systems might influence the
resulting Wigner functions. This quasiprobability distribution,
as outlined in Ref. [106], can be computed as

Wir(B) = r[W,1(B)|@ur())(Pu @], (37)

where we defined Wq(ﬂ) = Dq (B )ﬁqDAZ(,B) wherein flq rep-
resents the parity operator acting on mode g. It is noteworthy
that in the case of Gaussian pure states, the resulting Wigner
function maintains positivity across the entire phase space.
However, this positivity does not necessarily extend to non-
Gaussian states [107], as observed, for instance, with Fock
states and certain coherent state superpositions, which are
often used as examples of nonclassical states of light. Con-
sequently, the presence of Wigner negativities is commonly
regarded as an indicator of nonclassical behaviors.
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In Fig. 2, we present the obtained Wigner function under
varying conditions. From left to right, in each row we explore
scenarios with the laser field polarized along distinct crys-
tal directions, using two different dephasing times: 7, — 00
[108] and 7, = 1 fs. Notably, for the diverse crystal directions,
we considered distinct numbers of Brillouin zones. Specifi-
cally, we employed N, = 6.6 x 10° for the I'-M cases (first
two columns), while opting for N, = 1.6 x 107 for the I'-A
direction. Bigger values of these parameters would lead to
more spread and unbalanced coherent state superpositions,
and therefore to Gaussian-like Wigner functions, while for
smaller values we would get distributions aligning with those
of displaced single-photon excitations. Moreover, these val-
ues allow us to highlight one of the main differences when
considering different bands: for the same number of Brillouin
zones, excitations along the I'-M direction lead to more spread
and unbalanced coherent state superpositions compared to the
I'-A direction. This behavior is a consequence of the bands’
shape [see Fig. 6(b) in Appendix A] where the electron mo-
bility along the valence band of the I'-A direction does not
involve the same energetic exchanges as it happens for the
valence band along the I"'-M direction. Thus, less electrons,
and therefore smaller N,, oscillating along the I'-M direction
are needed to reproduce the same displacements as obtained
along the I'-A direction.

Upon comparing the columns, two conclusions can be
drawn. First, when 75 is smaller, we observe more distinct
and unbalanced coherent state superpositions with reduced
Wigner negativities. This is due to the increased magnitude
of | Xﬁq:])(t, t9)|. Second, depending on the crystal direction
the amount of displacement varies. Specifically, and as dis-
cussed earlier, for excitations along the I'-M direction, the
displacement is bigger when using the same N,. On the other
hand, in the first two rows of Fig. 2, we separately exam-
ine intraband and interband contributions, respectively, by
intentionally disabling the other. The third row presents the
total contribution, which is the coherent summation of both
interband and intraband effects. In this scenario, a compari-
son across the rows highlights that the dominant contribution
primarily arises from intraband terms. Furthermore, this intra-
band contribution tends to increase as 7> decreases.

The predominance of intraband contributions over in-
terband contributions in the coherent state superposition
formation, including the impact of dephasing times, can be
elucidated as follows. As previously mentioned, intraband
contributions stem from Bloch oscillations, which entail the
electron’s acceleration within a specific band under the influ-
ence of the field. Decreasing dephasing times signifies that
the electron spends less time in the conduction band after
excitation due to interactions like electron-phonon or electron-
electron interactions. Consequently, the electron transitions
out of the conduction band more quickly after excitation,
exhibiting a nonradiative decay process. This shift in behavior
makes intraband phenomena more significant compared to
interband effects as 7> diminishes, and also to less important
contributions from interband [see Figs. 2(g) and 2(h) where
the Wigner functions become slightly more homogeneous
as T, decreases]. Finally, this trend between interband and
intraband can also be observed in the semiclassical spectra

displayed in Fig. 1, where intraband and interband contribu-
tions to the spectra become more comparable just before the
perturbative region (upper bounded by the leftmost horizontal
dashed line). However, it is worth noting that, while the inter-
band component of the HHG spectra depends on the interband
current, in the case of qu:l) it depends on the interband
polarization (see Appendix B2).

Furthermore, the shape of the conduction band, specifically
its dependence on crystal momentum, significantly influences
the results. This is evident in the contrasting Wigner functions
obtained when considering either the I'-M and I'-A crystal
directions. In such instances, the findings suggest that a flat-
ter valence band [as illustrated in Fig. 6(b) in Appendix A]
corresponds to a smaller | )’(sqzl)(t, tp)|. As mentioned ear-
lier, this occurs due to the reduced energy gap between the
maximum and minimum energy levels within the respective
valence band, leading to a smaller energy exchange between
the accelerated electron and the electromagnetic field. Thus,
when | Xﬁqzl) (t, t9)| is small enough, the first coherent state
of the superposition in Eq. (36) can be expanded in Fock
basis, such that the vacuum component cancels out with the
second term of Eq. (36), as in the limit | ¥ =", 10)] — 0 we
get &r|Euv|? — 1. This leaves us with a state that is quite
alike to a single-photon state, whose Wigner function has a
volcanolike shape with a deep minimum at the center, similar
to those shown in the central row of Fig. 2.

C. Fidelity of the coherent state superposition

In previous studies [61-63], it was demonstrated that the
nature of the generated coherent state superposition through
conditioning on the HHG process can vary based on the spe-
cific conditions under which the nonlinear interaction takes
place. These variations range from a (displaced) Fock state,
often called a kitten state, to an unbalanced coherent state
superposition, usually referred to as a displaced car state. In
the regime where | )‘(,Sq:l)(t, tp)| > 0, the value &R tends to
zero, resulting in a (displaced) coherent state.

Here, we investigate the influence of the electric field
strength of the driving field and the dephasing time on the
conditioned state. We achieve this by examining its fidelity in
comparison to (1) a coherent state in the form of | )'(,fqzl) (t, 1))
and (2) a Fock state |1,). These two limits represent the most
extreme scenarios observed in HHG within atomic systems
[62,63], as mentioned earlier. The fidelity F(|@), |®, r(#)))
between |¢) and |®, 1r(¢)) is given as follows:

Flg), [D, (1)) = [{p| P, r(1)) 7, (38)

which can be interpreted as a measure of distance between the
two states [109]. It is important to note that when investigating
the dependence of this measure on the electric field strength,
we confine our analysis to values within the range of 0.2 t0 0.6
V/A, which are commonly employed in experimental setups
[27,35]. Values exceeding 1 V/A typically surpass the damage
threshold of many materials [29,34,110,111]. Regarding the
dephasing times, we focus on the interval 1 to 10 fs. While the-
oretical models [75,76] indicate that 7, ~ 1 fs is necessary to
observe resolved harmonic spectra (as depicted in Fig. 1), that
could potentially align with certain experimental observations
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FIG. 3. Fidelity of the state in Eq. (36) with respect to a Fock
state |1,) (orange curves with squared markers), and the coherent
state | 9=V (¢, 1)) (blue curve with circular markers). In (a), the
fidelity is plotted as a function of the dephasing time 7, while in
(b), it is plotted as a function of the electric field strength E;. The
inset plots in (b) show the semiclassical harmonic spectra, from left
to right, for Ey = 0.25 V/A and for E = 0.45 V/A. For both plots,
we set the dephasing time 7> = 1 fs and considered the applied laser
field to be linearly polarized along the I'-M direction.

in which electrons acquire high values of crystal momentum
[112], it is generally observed that the typical dephasing times
in semiconductors extend beyond 10 fs [113,114].

In Fig. 3 we present the obtained results for a linearly
polarized driving field aligned with the crystal direction I"-M.
Specifically, Fig. 3(a) illustrates the dependence of the fidelity
with respect to 7> (while keeping Ey = 0.5 V/A constant),
and Fig. 3(b) shows the dependence on Ej (with 7, =1 fs
held constant). Notably, as T, increases or Ej decreases, the
fidelity to the Fock state |1,) rises, while the fidelity to the

coherent state |j, (= 1)(t tp)) decreases. Although dephasing
times are largely beyond experimental control as they are due
to material properties, the electric field strength offers a means
to influence the fidelity of the generated state.

Moreover, within the considered ranges—consistent with
experimental implementations—the generated state’s fidelity
is highly tunable. For instance, the fidelity to the Fock (co-
herent) state changes from approximately F =~ 0.98 (=0.05)
at £y =0.2 V/A, to around F ~ 0.09 (=0.98) at Ey = 0.6
V/A, since the smaller (bigger) |%“='(t,1)| is, the more
similar the generated state would be to a Fock (coherent)
state. It is crucial to note that our analysis has been based on
N. = 6 x 10°, implying that factors such as the beam width
in the interaction region and the sample’s width (in the case
of HHG during transmission) also play an instrumental role in
controlling the generated state fidelity.

D. Entanglement between the field modes

As mentioned in Sec. II B, the state presented in Eq. (35)
takes the form of an entangled state among all the field modes
excited during the HHG process. This was demonstrated in
a previous study [66], where the degree of entanglement
between one mode ¢ and all the others (V¢ # g) was in-
vestigated as a function of | )‘(,ﬂ":”(t, t9)|. To accomplish this,
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FIG. 4. Linear entropy as a function of the harmonic modes. In
(a), we investigate the impact of interband dynamics (green curve
with diamond markers), intraband dynamics (orange curve with cir-
cular markers), and their combined effect (blue curve with squared
markers) on the linear entropy. These analyses are conducted with a
fixed value of Ey = 0.5 V/A and T, — oo. In panel (b), we examine
the influence of dephasing time using three scenarios: 7, — oo (blue
curve with squared markers), 7, = 10 fs (orange curve with circular
markers), and 7, = 4 fs (green curve with diamond markers), while
maintaining E, = 0.5 V/A. Finally, in panel (c), we explore the
effect of electric field strength with 7, — oco. We consider Ey = 0.5
V/A (blue curve with squared markers), Ey = 0.35 V/A (orange
curve with circular markers), and Ey = 0.2 V/A (green curve with
diamond markers). All cases involve a linearly polarized field along
the I'-M direction.

the linear entropy [115,116] was employed as entanglement
measure:

Sin(pg) = 1 — (), (39)

which is obtained through a first-order expansion
of the von Neumann entropy [116], where g, =
trg2g[| Py () (Dy (D)[]/tr[| Dy (£)) (Do (2)]]. It is worth noting
that, unlike the von Neumann entropy, the linear entropy is
bounded as 0 < Siin(04) < 0.5, the lower bound obtained for
separable states (p, being a pure state) and the upper bound
for maximally entangled states (9, being a maximally mixed
state). This method is particularly suitable for computations
involving continuous variable pure states, such as coherent
states.

Here, we investigate how this entanglement measure
changes for different harmonic modes under various con-
ditions. This is illustrated in Fig. 4, where similar features
akin to a typical harmonic spectrum are evident. A frequency
plateau extends until a sharp cutoff, which, when the field
intensity is sufficiently high, aligns with the maximum energy
band gap (indicated by the dashed vertical black curve).

In particular, Fig. 4(a) considers a field with amplitude
Ey = 0.5 V/A, while setting T — o0, to examine the con-
tributions of interband (blue curve with squared markers)
and intraband (orange curve with circular markers) effects
to the linear entropy, as well as their combined contribution
(green line with diamond markers). In contrast to the Wigner
function distribution, in this case interband effects dominate.
Notably, for g = 1, the amount of entanglement reaches a
maximum value of Sy, (04=1) = 0.44. This dominance aligns
with expectations, as revealed in Fig. 1, where within the
perturbative part the spectrum, interband effects play a more
pivotal role than intraband effects, influencing both the shape
of the harmonic plateau and the cutoff frequency.

Conversely, as the dephasing time decreases, the harmonic
yield for constant field (Ey = 0.5 V/A) diminishes, resulting

035203-8



NONCLASSICAL STATES OF LIGHT AFTER ...

PHYSICAL REVIEW B 109, 035203 (2024)

x10-2  Ey=05V/A _x1073 T=1fs

(a) R (b)

,;
\
.

" 1 \ —a- =1

‘Sth'n“‘f\)q ])

[\]
m
\
)
e

—a— =1 2 \
- o3 ™
0L e aewe = 0 -

2.5 5.0 7.5 10.0 0.2 0.4 0.6
Dephasing time T Electric field strength, Ey (V/A)

- g --m--m--a

FIG. 5. Dependence of the linear entropy on (a) dephasing time
and (b) electric field strength for the first (blue curve with squared
markers) and third (orange curve with circular markers) harmonic
modes. In panel (a) we maintain £y = 0.5 V/ A while in panel (b) we
fixed T, = 1 fs constant. In both scenarios, the incident light is
linearly polarized light along the I"-M direction.

in a reduction in the total entanglement as observed in
Fig. 4(b). In Fig. 4(c), we investigate the variation in the
degree of entanglement as a function of the harmonic mode
when considering different field strengths and assuming the
limit 75 — oo. It can be observed that, for lower field
strengths, the cutoff frequency at which the linear entropy
reaches zero decreases. This behavior is analogous to the
pattern seen in the harmonic spectrum (as depicted in the
insets of Fig. 3 and further discussed in Ref. [27]). On the
other hand, we find that the amount of entanglement within
the plateau region diminishes as the field strength decreases.

The trends observed in Fig. 4 are further highlighted in
Fig. 5 with some remarkable differences. In Fig. 5 the linear
entropy is shown as a function of the dephasing time for the
same field strength value Ey = 0.5 V/A. Notably, both the
first (blue curve with squared markers) and the third (orange
curve with circular markers) harmonics exhibit an increase in
the linear entropy with higher 7,. However, it is noteworthy
that the rate of change in entropy varies between the first and
third harmonic modes. On the other hand, in Fig. 5(b) we
show the dependence of the linear entropy as a function of
the field strength for a constant dephasing time 7, = 1 fs for
the aforementioned harmonic modes. These two harmonics
follow different trends, at very distinct orders of magnitude,
on their behavior for increasing field strengths. While for
g = 1 the degree of entanglement decreases with increasing
field strengths, for ¢ = 3 this quantity reaches a maximum
around Ey ~ 0.38 V/A. Notably, we observe that dephasing
time influences on the dependence of degree of entanglement
for harmonic modes, as in Fig. 4(c) it is found that decreasing
field strengths lead to reduced values of the linear entropy for
the considered harmonic modes.

Although in this instance entanglement features among
distinct modes emerge due to the conditioning on HHG op-
eration, recent findings [117] in atomic systems demonstrate
that beyond the weak-depletion approximation of the ground
state, squeezing and entanglement features can manifest in
harmonic modes without conditioning. Hence, an avenue for
further exploration could entail investigating a similar sce-
nario in solids. Specifically, Ref. [118] showcased that the
utilization of fields with a sinc? envelope necessitates con-
siderations beyond the weak-depletion approximation of the
valence band. Consequently, one could think about the use

of this kind of pulse to observe similar features in solid-state
systems.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have investigated high-harmonic genera-
tion processes in semiconductor materials under a quantum
optical perspective. Our paper focused on the interaction of
a strong infrared laser field, linearly polarized along differ-
ent crystal orientations of a ZnO material, which has been
extensively examined both experimentally (e.g., Ref. [27])
and theoretically (e.g., Ref. [75]). Similar to atomic systems
[61-63,66], our findings show that conditioning measure-
ments on the high-harmonic generation process enable the
creation of entangled coherent state superpositions. Thus,
these results suggest that the experiments conducted in
Refs. [61,62,65] could potentially be conducted at smaller
length scales, considering that typical semiconductor samples,
utilized in much of the current technology, are very small
[27,35].

We observed that the generated states are strongly in-
fluenced by the electron interband and intraband dynamics,
excitation conditions including the polarization direction and
field strength, and inherent solid-state properties such as
the dephasing time. Specifically, the analysis of nonclassical
properties on the final IR state, assessed through the pres-
ence of Wigner function negativities, reveals that intraband
dynamics play a predominant role, and get reduced for in-
creasing dephasing times and for decreasing field strengths.
Conversely, the evaluation of entanglement properties, char-
acterized by the linear entropy, indicates that interband
dynamics have a more pronounced impact in this case. En-
hanced values of this entanglement measure are observed with
increasing dephasing times while the behavior with respect
to the field strength depends on the targeted harmonic mode
and the considered dephasing time. Thus, these two nonex-
clusive indications of nonclassical behaviors appear in two
opposite regimes. These results suggest that, in experimental
implementations, obtaining Wigner functions similar to those
presented in this paper would be more accessible than finding
non-negligible values of entanglement between the different
field modes. This is because the inclusion of dephasing times
does not eliminate the quantum superposition between the
states, as they can also be countered with other controllable
experimental parameters such as the width of the solid-state
sample and the laser field strength.

While we have observed that dephasing effects strongly in-
fluence the nonclassical properties of the state, it is important
to emphasize that the role of dephasing times and the values
typically considered in theoretical analyses remain subjects of
ongoing debate within the research community. In contrast to
certain theoretical findings, some experimental results suggest
dephasing times beyond 10 fs, while other recent theoretical
findings propose that long trajectories in the real space of
solids can lead to destructive interference, resulting in clear
harmonic spectra even in the regime of 7, ~ 10 fs [95]. Addi-
tionally and beyond dephasing, propagation effects and other
macroscopic aspects [119,120] also contribute to shaping the
features of the resulting harmonic spectra. As such, we antici-
pate that these various factors play crucial roles in determining
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the ultimate properties of the generated nonclassical states,
extending beyond the scope of the considerations discussed in
this paper.

Finally, it is worth noting that our paper involves certain
approximations. One such approximation pertains to the con-
sideration of a discrete set of modes and the incorporation of
a weighting function to account for the pulse envelope when
multiplying the electric field operator. While this approach
has proven its validity in explaining different experimental
observations, as seen in references such as [61-63,65], we
have observed that in solid-state systems, it may potentially
impact the entanglement features between light and matter.
Therefore, a natural progression would involve exploring a
more precise description that encompasses a continuous set
of electromagnetic field modes. Furthermore, our analysis has
primarily focused on the effects of intraband and interband
dynamics, while neglecting the influence of other factors like
those associated with mixed currents. Although these aspects
remain open questions from a semiclassical perspective, a
promising avenue for further research lies in investigating how
these effects, along with contributions from Berry connection
terms, shape the quantum optical state.
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APPENDIX A: ABOUT ZnO PARAMETERS
AND THE NUMERICAL CALCULATIONS

For the numerical simulations we have done in this text,
we considered as a solid-state system crystalline ZnO, which
is a centrosymmetric material with a cubic lattice structure.
In order to model it, we considered a two-band, tight-binding
model with energy-dispersion relations for valence and con-
duction band defined in Egs. (1) and (2). The expansion
coefficients a,fnj have been extracted from Refs. [76,77],
and can be calculated using the nonlocal empirical pseu-
dopotential method (see, e.g., Ref. [122]). For the sake of
completeness, we show these values in Table I, as well as the
corresponding lattice constants along the different directions,
to which we refer hereas I'-M — x,I'-K — y,and I"'-A — z.
In Fig. 6 we plot these energy band dispersion relations for
the different solid directions. Here, we are restricted to elec-
trons that are around the I" point, but we allow for freedom
in the value of crystal momentum that is being plotted, k;.
In our numerical calculations, we also considered values of
the crystal momentum close to the I point for those solid
directions along which the laser field is not parallel. Increasing
values of k (within the corresponding Brillouin zone) along
these directions leads to smaller contributions in the HHG
spectrum.
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TABLE I. Solid parameters used to model crystalline ZnO. The data we used have been extracted from Refs. [75-77].

Valence band Conduction band

Lattice constants (in a.u.)

o = —0.0928 a®, = 0.0898 ay = 5.32 a, = 6.14 a,=9.83
a, , = 0.0705 Olcl.,x = —0.0814 Kane parameters (in a.u.)

o2, = 0.0200 a2, = —0.0024 E,, = 0.479 E,, = 0.355 E,.=0.355
o =—0.0012 o}, = —0.0048

ot =0.0029 at, = —0.0003

oS = 0.0006 o, = —0.0009

o, = —0.0307 al, =0.1147

al, =0.0307 al = —0.1147

o, = —0.0059 ®, = 0.0435

@, . = 0.0059 !, = —0.0435

On the other hand, and unlike the numerical analysis done
in Refs. [75,76], in our description we do account for the
dependence with the crystal momentum of the dipole matrix
elements between valence and conduction bands. In terms of
the k - p approximation [78], these can be written as

49 (k) = Epi (A1)
ue 2(E.(k) — E, ()]’

which are shown in Fig. 6(a) as a function of the crystal
momentum. Here, we also considered values around the I
point for the solid directions different to those that are being
actually plotted.

The numerical simulations presented in this paper have
been done in MATHEMATICA and using a MacBook Air M1
(2020) with eight GPU cores. Once the solid and laser field
parameters are fixed, each simulation using all the cores in
parallel takes around 5 min to finalize.

APPENDIX B: STEP-BY-STEP DERIVATION OF THE
QUANTUM OPTICAL DESCRIPTION UNDER THE
SINGLE-ACTIVE ELECTRON APPROXIMATION

In this Appendix, we present a comprehensive derivation
of the equations outlined in the main text about the quantum
optical description of the laser-solid interaction. We begin the
derivation from Eq. (20) and proceed step by step. Initially,
in Sec. B1 we introduce certain transformations to facilitate
subsequent calculations, and we further make specific approx-
imations. Following this, in Sec. B2 we advance to solve the
resultant Schrodinger equation.

1. Transformations and approximations

Starting from the definition of the semiclassical Hamilto-
nian given in Eq. (6), we can rewrite Eq. (20) as follows:

O 4 att) + 1)
+ ey ter(Ea(t) + E@)]P (1)), (B
and introducing the transformation
|‘I’(t)) — eie(Acl(r)-FA(f))?iJra/ﬁ|\I;/(t))’ (B2)

where Ay () = tr(A()|W(ty)) (¥(to)|) with A(r) the vector po-
tential operator defined as E(t) = —0dA(t)/0t, we get

9 . 4 o
—eg (Aal) + A(t))F; g€ AAO A /By (1))

W' (1))

1 el eAaOFAW) i/

ot
= [Hcr + ei'i,tra(Ec](t) + E(t)) + E?i,ter(Ecl(t)
+ E’"(t))]eie(Acl(l)+A(t))?[.ua/ﬁ|\I;(t))’ (B3)
which after some reordering, leads to
| (¢ A R N R
e a;( D e A M e (Ea(r) + B0
X AAOHAO /G (). (B4)

The coupling factor g(w,) in the vector potential’s defini-
tion is relatively small, rendering quantum optical fluctuations
a perturbative element (at the level of single electrons). Con-
sequently, if we expand AR/l g o polynomial series,
retaining terms up to first order in g(w,), i.e., €AW i/l
1+ ieh’lA(t)?i,tra, we obtain, for each term in Eq. (B4), the
following expressions:

e—ieA(f)?i,xra/ﬁﬁcreieA(l Wita/ Tt
~ ﬁcr - i6h71A\(t)f'i,trchr + i6h71A\(t)Hcr?i,tra
= Hcr - ieh_lA(t)[?i,trchr]a (BS)

e_leA(t)ri,tru/hl’}iylerelEA(t)ri,tra/ﬁ

X Fiter — ieh T A(F; wafi ter + i€h T AP terPiira
= ’A'i,ter - ieh_lA(t)[’A"i,Lraf’i,ter]v (B6)
e~ w/R (1) oieAD i/

~ E(t) — ieh "7 A (OE(t) + ieh ™' i £ (H)A(2)

~ E(1), (B7)

where, in Eq. (B7), we have additionally neglected terms of
the form E (t)A(t), which are second order in terms of glwy). It
is worth noting that by making this simplification, we exclude
second-order terms involving creation and annihilation oper-
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ators. These terms could potentially introduce entanglement
between the field modes and even lead to squeezing effects
[68].

Moving on to the other two equations, we observe that
Eq. (BS) introduces the influence of the intraband current,
as defined in Eq.(14), while Eq. (B6) captures the impact
of the mixture current. As highlighted in the main text, the
primary objective of this paper is to examine the backaction
of interband and intraband currents on the quantum optical
state. As such, we omit the consideration of the effects of the
mixture current, which still remain uncertain within the scope
of semiclassical theories.

Thus, under the previous approximations, the Schrédinger
equation we aim to solve is

(1))
ot

ih = [Hu(t) + efier(t)(Ea(t) + E (1))

— el D (DAY (1)), (B8)

where we have defined ;40 = [ tra, H..]. Note that in this
expression, H(r) and Piter(?) are defined as in Egs. (9) and
(10), and ¥; 4(t) is obtained similarly as in these equations.
At this point, we move to the interaction picture with respect

0 Hye(t) = Herlt) + e Eer(1), that s,

W) = et 10) [T (1), (BY)
where U (t, to) = 7A‘exp[—i f;:, drﬁsc(t)/h] with 7 the time-
ordering operator. It is important to note here that this unitary
transformation is the one solving Eq. (9). Therefore, the ob-
tained Schrodinger equation reads as
3|V (1))

ot

ih = [eFier(E(t) — ieh™ 0 A0V (1)), (B10)

J

where we have defined f",-,ter(t) = UJC (t)f’i'ter(t)ljsc(t) and
l_)i,tra(t) = USTC (t)f)i,lra(t)Usc (@).

2. Solving the obtained equation
To solve the equation presented in Eq. (B10), we project it
onto |K, m), resulting in

ol R - A
ihglq%n(K, 1) = (K, mlleF; er(DE @) — ieh™" b A1)

x [T(r)), (B11)

where we have defined |®,,(K, 1)) = (K, m|¥(¢)). Introduc-
ing the identity in the Bloch basis form, i.e.,

1= /dK’|K’,l)(K’,l|K’,l), (B12)

I=v,c
we can rewrite Eq. (B11) as

ih%m)m(K,I)) =2 f dK'[e(K, m|F; e (t)K', E(2)

I=v,c
x | DK, 1)) —ieh ™ (K, m|V; ua(t)

x K, DA®@)|®;(K', 1))]. (B13)

Let us now proceed with the evaluation of the matrix ele-
ments within the aforementioned expression. To facilitate this,
we consider that, in line with Eq. (11), we can express

Usc(t, 1)K, m) = b, (K, t;m)|K, v) + b.(K, t;m)|K, c),
(B14)

such that for the interband contributions we get

[dK/<K,MIﬁ,1er(t)IK/,l)|¢/(K/,t)> = /dK’[b’,'j(K,t;m)(K,vl + by(K, 1;m)(K, c[1# er

x [by(K, t;DIK, v) + b.(K, t; DIK, o)1 (K', 1))

=Y Y BK sm)bi(K, 13 Dy (K + eEiAa (1))@, (K, 1))

i=v,c j=v,c

= e "MK, 1)K, 1)), (B15)

where, in going from the first to the second equality, we have used Eq. (5) along with the fact that |K, m) = e~ A gy )

with k = K + £;Aq(¢). It is worth noting that the matrix element M 26;) also encompasses the Berry connection terms; however,

in our numerical computations, these terms are omitted due to their absence in the case of ZnO when excited along the I'-M
crystal direction (see, e.g., Ref. [83]).

On the other hand, to calculate the intraband matrix elements, we break it down into two parts. Since D; ¢, is defined as a
commutator, we examine each element within the commutator individually. For one of these, we obtain

/dK’(K, Iy (OHee (0K, 1)@ (K, 1))
= /dK’[b’Z(K, t;m)(K, v| + b, 1;m)(K, c|]fi waHe (Db (K, 15 DK, v) + be(K, 1; DK, ¢)]|®1(K', 1))

_ / dK'IB% (K. 1 m) (K. v] + b7 (K, 1:m)(K, c[]ua
X [Eu(K + eEAa()by(K, 1:DIK, v) + E.(K' + eEAa(t)bo(K, 13 DK, )1| (K', 1))
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=y / KB (K, 1:m) (K., mlF o K, DK 1 DE(K + eEiAa (1) @1 (K, 1)

i=c,v

=ih Z bi (K, t;m)i[bi(K, 1;DE(K + e&Aq (1) P (K, 1))],

oK;

i=c,v

(B16)

where in this expression (1) to transition from the second to the third equality, we consider the diagonal nature of the 7;
elements with respect to the bands, and (2) to move from the third to the fourth equality, we utilize the relationship defined in
Eq. (4). Applying a similar analysis, we get the following for the remaining term in the commutator:

/dK’(K, Ml Her(0)Fs o (OIK, )| @ (K, 1)) = i > b, m)E(K + egiAcl(t)ai[bi(K9 10) 1 (K, )],

i=c,v

and combining Eqgs. (B16) and (B17), we end up with

/dK'(K, m|biwa()K', 1) = ik Y bH(K, ;m)bi(K, t;l)%[Ei(K + e&iAa())]|Pi(K, 1))

i=c,v

K B17)

(B18)

= ihe”' M, (K, 1)| 0/ (K, 1)).

The expressions we have found in Eqs. (B15) and (B18)
are directly linked to the inter- and intraband currents given
in Egs. (15) and (14). Specifically, the first corresponds to the
time-dependent interband polarization while the second corre-
sponds to the intraband current. However, the main difference
between them is that the first ones have been computed under
a noiseless scenario, while the second ones were computed
using the SBE formalism and introducing dephasing effects.
In our numerical analysis, we take into account dephasing
effects phenomenologically on the quantum optical state when
computing Mn(;elr ) and Mr(:?), which we do by using the SBE
approach. More specifically, we can express the M,Stfff) and
M{"™ elements, which will play a fundamental influence in
the equations below as

Mfru = (K, 1)d, (K + e&iAqr) (@) + c.c., (B19)
. 0
M = Z (K, 1) —[E;(K + e&Aa(1))], (B20)

m=c,v aKl

where the n,,(K, ¢) and 7 (K, #) are obtained by numerically
solving Eqgs. (12) and (13) in the main text, with the dephasing
time 7, used as a parameter. It is a reasonable assumption
to make a weak-coupling limit approximation between the
quantum optical degrees of freedom and the time-dependent
interband and intraband operators since g(w;) < 1. We note
that under this approximation, the results obtained in this
paper and the ones obtained by solving the corresponding
Liouville equation should converge [123], as in both cases we
get that the final joint state of the electron and the electromag-
netic field are decoupled.

By introducing these expressions into Eq. (B13) and ex-
plicitly distinguishing between projections onto the valence
and conduction bands, we obtain

ih%@v(K, 1)) = [MYDK, OHE@) + MIWAD)]|2,(K, 1))

+ [MEPDK, HE @) + MI™WA®D)]

x | DK, 1)), (B21)

(

ih%vbc(K, 1) = [MYP K, DEE) + MIPA®)]19,(K, 1))
+ MEPK, OE@) +MEVA@)]| P (K, 1)).
(B22)

Each of these differential equations has both a homoge-
neous and an inhomogeneous component. As a result, their
solutions can be expressed as the sum of the solution to
the corresponding homogeneous equation and a particular
solution to the inhomogeneous one. Consequently, we will
initially examine the homogeneous component, which is gen-
erally described by

? A A
ih B (K, 1)) = [ (K OE@) + MTIAW)
X | @i nom (K, 1)), (B23)

and taking into account the definition of the electric field and
vector potential operators, i.e.,

qL'
E@)=—if (1)) glwg)@je™" —aze™™"),

(B24)
g=1
~ A q" L
A =~ [ a0 =iy s IE 0, - F 0)d,)
g=1
(B25)

where in Eq. (B25) we have defined F(¢) = fdtfq(t) with
i =f (t)ed’ . In Fig. 7 we show how these two functions
behave when setting w,; = w;. Thus, by introducing these
expressions in Eq. (B23), we get

ih%|¢i,hom(K’ 1)) = iqil:g(wq)[(— Mﬁfr)(K, A
+ M (K. 0)F,(1))a)
— (- MK Df @)
+ MUK, OFF(1))a, ]| pom (K, 1)),
(B26)
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FIG. 7. Real (in blue) and imaginary (in orange) parts of the
envelope functions appearing in the definition of the (a) electric field
operator and (b) vector potential operator when w, = w; (similar be-
haviors are obtained for higher frequencies). In the limits r — 00,
both functions tend to zero.

Hence, the homogeneous part of the equation is expressed
as a linear combination of photon annihilation and creation
operators, which operate on distinct electromagnetic field
modes. In fact, this equation bears resemblance to those de-
rived in the analysis of HHG processes in atomic systems
[61-63], and to some extent, in molecular systems [70]. By
solving the equation using a similar approach as applied in
those instances, we can formulate its solution as follows:

[P nom (K, 1)) = D(x:(K, 1, 10))[Pi hom(K, 1)),  (B27)
where  D(x;(K, 1, tg)) = T[]l [ 0D, (57 (K, £, 10))],
with ¢,(K, 1,1%) a phase factor arising from the use of the
BCH formula [62,63,97] in order to write the solution above,
and where x, (K, , 7o) is given by

1 t
XK, 1. 10) = ﬁg(w")/ dt[- MSV (K, 1)f,(r)
fo

+ MUK, T)F,(7)]. (B28)

If we now concentrate on Egs. (B21) and (B22), and upon
introducing the specific solution to the inhomogeneous equa-
tion, we can establish the subsequent recursion relation for
their solutions:

1D, (K, 1)) = D(x,(K, 1, 1)) P, (K, 1))

.t
_ % / At D, (K. 1.1) My (K. 1)

fo

x |®.(K, 1)), (B29)

DK, 1)) = D(x (K, 1, )| Pc(K, 10))

; t

- % / dt,ﬁ(Xc(Ka t9 t/))M(‘,U(K’ t/)
fo

x |®,(K, 1), (B30)

where in this expression we have defined, for the sake of
clarity,

Mi (K, 1) = MK OE @) + MVA@).  (B31)

By combining these two equations and considering terms
up to first order in g(w,), we obtain the following expression
after introducing the initial conditions:

4
|D,(K, 1)) = 8(K — Ko)D(x,(K, 1, 10)) (X) 105),  (B32)

q=1

(K, 1) = ~5(K ~ Ko) / A DK, 1.1))

qe
x MoK, 1) (@) 10,),

q=1

(B33)

and for the joint state of the system we get (up to a normaliza-
tion factor)

@)=Y /dKIK, m)| @, (K, 1))

m=v,c

qL'
= D(x, (Ko, 1, 10) Ko, v) Q) 10,)

q=1

.
- / dt'D(x, (Ko, 1, 1)) Moo (Ko, /Ko, ¢)

fo
q(?
x (X)10,).
q=1

Finally, we reverse the transformations that were previ-
ously implemented in order to get the set of differential
equations we have just discussed. To be more precise, we
encounter the following:

(B34)

(1)) = ORI (1, 1) (10)), (B3S)
which in the asymptotic limit # — oo leads to
(1)) = Use(t, 10)| ¥ (1)), (B36)

since, as observed in Fig. 7, the contribution of the first
unitary transformation appearing in Eq. (B35) tends towards
unity. This is because the envelope functions present in the
vector potential’s definition approach zero in the considered
asymptotic limit, as depicted in Fig. 7(b). Shifting our focus to
processes where the electron ultimately resides in the valence
band—thus applying the projector P, = [ dKIK, v)(K, v| to
Eq. (B36)—and tracing over the electronic degrees of freedom
while assuming that the probability of finding the valence
band electrons initially born in the conduction band is small,
we arrive at

q(?
|D,(K, 1)) ~ D(x,(Ko, 1, 10)) (X) 10,), (B37)

q=1

similar to what happens in atomic systems [61-63]. It is worth
noting that incorporating terms like (K, v|Us (¢, 1)K, ¢)
would introduce entanglement between the electronic and
electromagnetic field states. This was also recently studied in
Ref. [72], although under a more convenient Wannier perspec-
tive where one could treat the electronic states in a discrete
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manner, instead of the less convenient continuous representa-
tion described in this text. However, it was shown there that

for ZnO materials the amount of light-matter entanglement
was almost negligible.
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