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ABSTRACT

The fundamental polarization singularities of light are generally symmetric under coordinated rotations: that
is, transformations which rotate the spatial dependence of the �elds by an angle θ and the �eld polarization
by a fraction γθ of that angle, as generated by `mixed' angular momenta of the form L + γS. Generically,
the coordination parameter γ has been thought to be restricted to integer or half-integer values. In this work
we show that this constraint is an artifact of the restriction to monochromatic �elds, and that a wider variety
of optical singularities is available when more than one frequency is involved. We show that these new optical
singularities present novel �eld topologies, isomorphic to torus knots, and we show how they can be characterized
both analytically and experimentally. Moreover, the generator for the symmetry group of these singularities,
whose algebraic structure is deeply related to the torus-knot topology of the beams, is conserved in nonlinear
optical interactions.

Keywords: Topological optics, singular optics, structured light, optical singularities, polarization singularities,
rotational invariance, nonlinear optics, high-harmonic generation

This work reviews, summarizes and contextualizes the results previously reported in Refs. 1, 2.

1. INTRODUCTION

The rotational invariance of optics is one of the central features of the theory, and it is central to the conservation
of angular momentum, both within electromagnetism in general as well as within optics in particular. As such,
rotationally-invariant beams are one of the central conceptual pillars that underpin our understanding of optics.
The simplest example of this are beams with circular polarization (depicted in Fig. 1(a)), which are invariant
under rotations of the electric- and magnetic-�eld polarization of the beam: if an optical beam polarized as
E = E0ê± (where ê± = (êx± iêy)/

√
2) is rotated by an angle α, it acquires a phase, R(α)E = e±iαE, equivalent

to a time delay.

A more recent discovery is that of light beams that are invariant under rotations to their spatial dependence,
the most prominent of which are Laguerre-Gauss (LG) beams (whose relationship with the orbital angular
momentum (OAM) of light3 launched the �eld of structured light4�7). These beams have helical wavefronts as
show in Fig. 1(b), so if the spatial dependence is rotated, the beam again acquires a phase: E(R(α)−1r)) =
eimαE(r), where m is the OAM quantum number of the beam. Moreover, this rotational invariance (associated
with a well-de�ned OAM Lz along the optical axis) can be combined with polarization rotational invariance
(associated by the spin angular momentum (SAM) Sz) to give beams that are invariant under full physical
rotations of the beam (i.e. combined rotations of the polarization and the spatial dependence, generated by the
total optical angular momentum Jz). This includes beams with radial and azimuthal polarizations (shown in
Fig. 1(c,d)) as well as similar optical polarization singularities.

However, while they are enormously useful, the polarization singularities of vector beams invariant under full
physical rotations are not the most fundamental or the most stable optical singularities, and if they are, e.g.,
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Figure 1. Rotationally-invariant beams. (a) Circularly-polarized beam, invariant under rotations of polarization. (b)
Optical vortex with a helical wavefront, invariant under rotations of the spatial dependence of the �eld. (c,d) Radially-
and azimuthally-polarized beams, invariant under full physical rotations. (e,f) `Lemon' and `star' C-points, invariant
under coordinated rotations. (g) Similar �eld with locally-linear polarization, produced by conical refraction (adapted
under CC BY-NC from Ref. 8). (h) Nontrivial Möbius-band topology of the polarization �eld in (g).

propagated through a turbulent medium, the singularity is liable to break up into individual singularities of a
more fundamental nature. These singularities are known as C-points, and two examples are shown in Fig. 1(e,f):
these are points where the �eld is circularly polarized, surrounded by points of elliptical polarization; moreover,
if one moves in a circle around the singularity, the direction of this elliptical polarization performs a full 180°
rotation. This can be either with the direction of traversal � in which case the C-point is of `lemon' type, as in
Fig. 1(e) � or against it, as in Fig. 1(f),in which case it is known as a `star' point.

At an initial look, the polarization �elds of the C-point optical singularities in Fig. 1(e,f) look anisotropic
and asymetric, but they do have a rigid symmetry: they are invariant under coordinated rotations,

E(r) 7→ R(γα)E(R(α)−1r), (1)

in which the spatial dependence is rotated by an angle α but its polarization is rotated by an angle γα, which is
related to the spatial-dependence rotation angle α by the coordination parameter γ. For the `lemon' and `star'
C-points of Fig. 1(e,f), γ equals +1/2 and −1/2, respectively. Moreover, this analysis can be made simpler if we
restrict our attention to beams whose polarization is always (locally) linear, which can be achieved using conical
refraction8�10 as shown in Fig. 1(g), with the only requirement that the optical singularity should now be dark.

Once we adopt this frame, however, a strong contradiction emerges. In general, our descriptions for linearly-
polarized light involve a real-valued polarization vector E(r), which can vary over space, and this corresponds to
adding an arrowhead to each of the polarization directions in Fig. 1(g) to select a direction. This can indeed be
done locally, but, as we show in Fig. 1(h), if we attempt to do this globally over the entire beam, we are doomed
to failure: since the polarization rotates by 180° over a 360° traversal around the beam, when we return to our
original starting point the arrowhead has �ipped its orientation.

Physically, the resolution of this apparent contradiction is that, as we traverse the beam, the �eld acquires a
growing phase which reaches a full sign-�ip phase of eiπ = −1 when we return to the starting point, accounting
for the �ipped direction. Topologically, however, things are much more interesting, because the mismatched
orientations in Fig. 1(h) tell us that the beam has the topology of a Möbius band. (Indeed, this topology
can be explicitly achieved in three dimensions by using nonparaxial con�gurations, as has been shown both
theoretically11,12 and experimentally.13�15) This Möbius-band topology is only possible if the coordination
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parameter γ is either an integer or a half-integer, a restriction which is further reinforced by the fact that the
only internal symmetry of monochromatic light is a rotation by 180° associated with a half-period delay.

Because of this, it has long been assumed (and recently `proved' with rigorous arguments8) that the only pos-
sible values for the coordination parameters that yield nontrivial beams invariant under the coordinated-rotation
symmetry of (1) are integers and half-integers. However, as we shall explain below, following our previous
results fromRef. 1, this restriction is an artefact produced by restricting our theoretical framework to monochro-
matic light. If this arti�cial restriction is broken, and polychromatic beams are allowed, the full spectrum of
coordination parameters γ becomes available, bringing with it a wide array of novel possible topologies for the
electromagnetic �eld.

2. TORUS-KNOT BEAMS

The key pillar that allows this conceptual expanse is that of the `bicircular' polarization of light: that is,
the coherent superposition of two counter-rotating circularly-polarized light �elds at di�erent frequencies, with
the archetypal combination being a fundamental ω and its second harmonic 2ω, which has been an essential

a b

f

Figure 2. Coordinated-rotation invariance and torus-knot beam topology. (a) The superposition of a right-circularly
polarized beam (red) with its left-circularly polarized second harmonic (green) produces a trefoil-shaped polarization
Lissajous �gure (blue). The orientation of this trefoil depends on the relative phase between the two components, which
can be made to vary along the azimuthal position θ by adding di�erent orbital angular momenta m1 and m2 to the
two components, shown in (b) for m1 = 0 and m2 = −2: the �eld then has coordinated-rotation invariance of the form
R(γα)E(θ − α, t) = E(θ, t + τα) with coordination parameter γ = −2/3 and τ = 1/6ω, and the lobe marked with a dot
does not return to itself after a 2π azimuthal traversal over θ. (c) To study this �eld's topology, we unfold the polarization
and azimuthal dependence, and then (d) twist the resulting cylinder to reconnect the planes at θ = 0 and 2π. (e) If we
then retain only the paths of the tips of the trefoil lobes (coloured by hue on (c-e) for visual clarity only), we obtain a
knotted curve embedded on a torus, in this case the (−2, 3) torus knot. (f) This torus knot can be seen as the path of
the lobes on the �at torus [0, 2π)× [0, 2π) of the azimuthal and polarization angles θ and φ, but also as the coordinated
rotations when seen as a subgroup of the independent-rotations group SO(2)×SO(2). 3D-printable models of (d) and (e)
are available from Ref. 16. Figure reproduced from Ref. 1.
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tool in the study of high-harmonic generation (HHG) as it o�ers a simple way to generate circularly-polarized
harmonics.17,18 This combination, shown in Fig. 2(a), produces a trefoil-shaped Lissajous �gure for the electric
�eld, which has a three-fold internal symmetry: a time delay by 1/3 of the period of the fundamental is equivalent
to a 120° rotation of the polarization.

This new internal symmetry of the local polarization state of the light then allows us to break the monochro-
matic restriction to half-integer coordination parameters. To do this, as shown in Fig. 2(b), we simply shape
the two frequency components into Laguerre-Gauss modes with di�erent OAM quantum numbers, which gives
them a di�erent relative phase at di�erent azimuthal positions along the beam. Since the relative phase between
the two components governs the orientation of the resulting trefoil, the combination produces a �eld of trefoil
polarizations which are rotated with respect to each other.

The crucial new feature becomes apparent if we label one of the trefoil lobes in Fig. 2(b) with a dot, and
then follow this individual lobe along the azimuthal traverse around the beam in the �gure as the trefoil turns:
when we return to our starting point, the trefoil returns to the same global shape, but the dot marking the lobe
we are following has switched to a neighbour. This is precisely the same topological nontriviality we observed
in Fig. 1(h) for C-point and conical-refraction beams, except that the usual two-stranded Möbius-strip topology
now has three strands we must follow, thus giving a novel topology.

To understand this topology, we �rst fold out the azimuthal component of the position, θ, as a separate
(�synthetic�19) dimension, orthogonal to the electric-�eld plane occupied by the bicircular trefoil, as pictured in
Fig. 2(c). Here we see the lobes of the trefoil twist around in a helix as θ goes from 0 to 2π, and there the
electric-�eld plane at the back of the �gure is a copy of the plane at the front at θ = 0, so we can twist the
�gure around, as in Fig. 2, to join the two. Distilling away most of the complexity of the �gure to retain only
the positions of the lope tips represented by the multicolored line, we get a simple expression of the topology,
shown in Fig. 2(e).

The novel topology is now fully revealed: the lobe-tip curve is knotted into itself, and cannot be smoothly
deformed back into a single loop without intersecting itself. More technically, it forms a torus knot, since the
curve can be naturally embedded in a torus, and as such it can be classi�ed using a pair of indices, (n,m), which
count the number of crossings of the two independent `equators' of the torus. For the speci�c case of Fig. 2,
these indices are (−2, 3), and they are in direct correspondence with the correlation parameter γ = −2/3 of
the beam. This is a general feature: the indices of torus knots are isomorphic to a fraction, and this fraction
is in strict correspondence with the coordination parameter of the beam for any bichromatic combination with
commesurate frequencies pω and qω, which is given by

γ =
m2ω1 −m1ω2

ω1 + ω2
=
m2p−m1q

p+ q
, (2)

where m1 and m2 are the OAM quantum numbers of the �rst and second beams, respectively.

3. THE SYMMETRY GENERATOR

In most cases, when one looks for optical �elds which are invariant under a symmetry transformation, the goal
is to �nd a symmetry generator Ĝ and a complex-amplitude vector �eld Ẽ(r) which is an eigenfunction of the
generator,

Ĝ Ẽ(r) = g Ẽ(r), (3)

and therefore also of the symmetry itelf, since it follows that

eiĜ Ẽ(r) = eig Ẽ(r), (4)

for a complex phase eig; in general, this framework is completely su�cient for all applications to monochromatic
light. In our case, however, the beam is not monochromatic, which adds a substantial complication in that the
complex phase eig no longer has a clear meaning, as it does not have a single clear-cut relationship with time.
(Indeed, for the two di�erent components at frequencies ω1 and ω2, complex phase accumulates at di�erent
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rates: e−iω1t and e−iω2t, respectively.) Because of this, we must discard the abstracted eigenfunction-eigenvalue
relation of (3) and return to its roots.

At its core, expression (4) describes a physical equivalence, for the physical �eld E(r, t) = Re[Ẽ(r)e−iωt],
between a symmetry transformation and a time delay. (The simpler (3) is then just the in�nitesimal version of
(4).) For our polychromatic �eld, this equivalence at the level of physical �elds still makes sense, and � for the
case of coordinated rotations � it reads

R(γα)E
(
R−1(α)r, t

)
= E(r, t+ τα), (5)

where τ is a constant with units of time, which speci�es how much time delay is accrued by the �eld per unit
rotation angle α for a coordinated rotation with coordination parameter γ.

This relationship is now a fully formed base which can be formally analysed to characterize the optical states
with coordinated-rotation invariance, which we have reported previously in Ref. 1. Importantly, when this general
theorem for arbitrary �elds is restricted to only monochromatic waves, one recovers the previously-known results
for that case.8

That said, although the generator eigenfunction relation (3) loses much of its value in this setting, it is
still instructive to understand the symmetry group at play, as well as its generator, which corresponds to the
in�nitesimal version of (5). Intuitively, this should be a combination of the OAM L and SAM S (with both
operators understood to be the z components of the respective vectors, within paraxial optics), weighted by the
coordination parameter:

Jγ = L+ γS. (6)

To understand this generator in more detail, the key starting point is the rotation symmetry group of paraxial
optics: this is given by a direct product of two copies of the rotation group, U(1) ∼= SO(2), since within paraxial
optics the polarization can be rotated about the optical axis independently of the spatial dependence.20,21 This
direct product, U(1) × U(1), forms a �at torus (as the topological product of two circles), and the subgroup of
coordinated rotations forms a straight line through it, depicted in Fig. 2(f).

This subgroup, generated by Jγ , turns out to be in exact correspondence with the torus knot traced by
the polarization trefoil of the beam, which we analysed in Fig. 2(e), if the torus that contains the torus knot
is �attened out. This means, therefore, that the subgroup generated by Jγ has the same knotted topology as
the beam itself, which motivates the name `torus-knot angular momentum' (TKAM) for Jγ , and provides a
remarkable connection between the geometric, topological and algebraic aspects of this operation.

4. THE POLARIZATION SINGULARITY

Having explored the torus-knot topology produced by these beam combinations, we now turn to an in-depth
look at the nature of the optical singularity at their core. In essence, we have shown the structure created by
the di�erent orientations of the trefoils in Fig. 1(b), but this simply raises deeper questions: what happens at
the center? and how does it interact with the points close to it?

At the center itself, the polarization is circular, since the 2ω �eld is in a LG �eld with zero intensity on the
optical axis, leaving only the circularly-polarized fundamental there. However, if we step away from the center,
we start getting a contribution from the 2ω beam, and this will tend to make the Lissajous �gure of the �eld
triangular � �rst slightly, and then with increasing sharpness � as shown in Fig. 3(b). Most importantly, the
orientation of the resulting triangle will depend on the direction that we choose to displace our viewpoint away
from the optical axis. As such, our beams contain a Lissajous singularity,22�25 of a completely novel kind.

At its core, our optical singularities are singularities in the orientation of (the Lissajous �gure of) the polar-
ization of the beam. As such, if we want a quantitative understanding of this singularity � and, particularly, if
we want a single numerical function which codi�es it � then we require a numerical measure of the orientation
of the bicircular Lissajous trefoil.

Within linear optics, the orientation of the polarization ellipse is obtained by looking at the 2×2 polarization
matrix 〈EiEj〉 (the time average of the quadratic products of the electric �eld components), whose eigenvectors
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d

Figure 3. Polarization singularity in torus-knot beams, and its experimental probing. (a) Idealized experimental scheme
for nonlinear polarization tomography: the bicircular �eld is passed through a linear polarizer LP, a nonlinear crystal NLC
which produces a further second harmonic from the fundamental, a �lter F that eliminates the fundamental, and a further
linear polarizer, and then detected. The whole stack is then rotated by an angle θ over an entire revolution; the output of
the method is the Fourier components of the signal over θ. (b) Lissajous �eld for a torus-knot beam, showing the changes
to the Lissajous �gure between a circle at the center and the full bicircular trefoil at mid-beam. The colour background
is the T3,3 �eld tensor. (c) Experimental measurement of a phase vortex in T3,3. (d) Experimental reconstruction of the
Lissajous �eld. Figure reproduced from Ref. 1.

point along the major and minor axis of the polarization ellipse. For bicircular combinations, however, this
measure is not appropriate, since it is symmetric under rotations of the electric �eld by 180° but not by 120°,
and the symmetry of the orientation measure needs to match the symmetry of the Lissajous �gure.

However, this combination does point to an obvious direction to try: simply increasing the number of factors
in the time average, from quadratic to cubic, giving the rank-3 tensor 〈EiEjEk〉 . This is a much bigger object
than the quadratic 〈EiEj〉, with four linearly independent components in two dimensions, so extracting a single
numerical measure of orientation requires an additional layer of analysis. This additional layer is the multipole
decomposition of this tensor into its components along irreducible representations of the rotation group SO(2),
which suggests the tensor measure

T3,3 =
〈
(Ex + iEy)

3
〉

(7)

as the combination with the correct symmetry � and, indeed, this produces precisely the desired results, with
arg(T3,3)( mod 120°) providing the orientation angle of the Lissajous trefoil. (This is the orientation measure
shown in the background of Fig. 3(b).) More generally, this tensor is part of a wider family of measures,

T`,n =

〈
(Ex(t) + iEy(t))

` (
Ex(t)

2 + Ey(t)
2
)n−`

2

〉
, (8)

which includes the `other half' of the raw tensor 〈EiEjEk〉, in the form of a dipole-representation component
T1,3 =

〈
(Ex + iEy)

(
Ex(t)

2 + Ey(t)
2
)〉

that can be used to describe `true' vector-vortex singularities that are
stable against decomposition into individual C-points.

In addition to this, our orientation measure, T3,3, can be directly measured in a laboratory setting. This
required the development of the �rst nonlinear polarization tomography protocol, a brief schematic of which is
sketched in Fig. 3(a). (In a realistic experimental implementation, such as that in Ref. 1, a more stable but
optically-equivalent con�guration must be used.) As we show in Ref. 1, this nonlinear tomography protocol
exactly measures T3,3, with an example of the experimental observations shown in Fig. 3(c). Even more strongly,
the measurement results can be used to provide a full reconstruction of the Lissajous �gure of the �eld polarization
at each point in the image, with the breakthrough measurements (subject to some noise and cross-talk between
the modes) shown in Fig. 3(d).

Proc. of SPIE Vol. 11818  1181809-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5. CONSERVATION OF THE TORUS-KNOT ANGULAR MOMENTUM IN

NONLINEAR OPTICAL INTERACTIONS

Having explored the structure of the torus-knot beams in detail, including their topology and their symmetry
generator, it is also worth asking whether they take part in nontrivial optical interactions. This is particularly
interesting in the context of high-harmonic generation, which is a demanding testbed for conservation laws in
nonlinear optics.18,26�32

High-harmonic generation (HHG) is the �agship process of attosecond science and strong-�eld physics.33

At its essence, HHG is a high-order frequency up-conversion process in which a large number of photons of
an intense, long-wavelength infrared driving �eld gets parametrically up-converted into single photons of high-
frequency XUV radiation. This process occurs at high intensity, and it is generally far from the perturbative
regime, which results in a long, �at plateau of harmonics of the driving �eld which can span hundreds an even
thousands of harmonic orders.34 The core dynamics of the emission, at a microscopic level, are given by the
`three-step model',35,36 in which the driving laser (1) removes an electron from one of the atoms in the target
gas jet through optical tunnel ionization, after which (2) the electron propagates in the continuum driven by
the laser �eld, and eventually (3) recombines with its parent ion, emitting its kinetic energy as a high-frequency
photon.

When the infrared driving �eld is replaced by a high-intensity bicircular combination, this picture is largely
unchanged: the �eld now has three maxima per period, each of which drives an ionization burst which produces
electrons that eventually recollide with the parent ion and recombine, emitting an attosecond burst of radiation
that is polarized along the direction of the velocity of the electron at the moment of recollision. This produces
a train of attosecond pulses, each of which is linearly polarized and oriented at 120° to its neighbours.

We can then go further, and provide this bicircular driving �eld with a torus-knot topology by giving nonzero
OAM to its two frequency components, as depicted in Fig. 4. Once we do this, the experiment becomes symmetric
under coordinated rotations, with the coordination parameter γ of the drivers. As such, the optical response � i.e.,
the high-harmonic emission � must share this symmetry, and our previous attosecond pulse train gets transformed
into a spiral of attosecond pulses, whose polarization twists as the spiral twists helically in divergence azimuth
and time.

To see this practically, we performed simulations of the harmonic emission using the Strong-Field Approxi-
mation,37�39 which we report in detail in Ref. 2. The results, shown in Fig. 5, agree exactly with this precision,
showing a clear helical intensity distribution. The polarization along this helix, which we measure using the

Figure 4. High-harmonic generation driven by a torus-knot beam. (a) Component ω and 2ω drivers. (b) Combined
intensity and polarization of the driving beam. (c) Schematic of the con�guration, with the driving beams impinging on
a target gas jet. The resulting harmonic emission forms a spiral of attosecond pulses with a twisted polarization, which
shares the coordinated-rotation symmetry of the driving �elds. Figure reproduced from Ref. 2.
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Figure 5. Simulated harmonic emission from the con�guration in Fig. 4. (a) Isointensity contour of the harmonic emission
in the time and angle-divergence domain, colored according to the time-speci�c orientation measure T2,2(r, t) (as given
in the color wheel to lower left). (b) Density map of T2,2(r, t) over divergence azimuthal angle and time, showing the
twisted-spiral structure of the attosecond-pulse emission. (c) Fourier transform of the results in (a,b) over time (giving
harmonic order) and angle (giving OAM L), with the two counter-rotating polarizations in red and blue. (d) Displacing
these plots by γS produces a single straight line, corresponding to the conservation of TKAM in the nonlinear optical
interaction. Figure reproduced from Ref. 2.

time-windowed average quadrupole �eld moment tensor,

T2,2(r, t) =

∫ ∞
−∞

(E(xuv)
x (r, t′) + iE(xuv)

y (r, t′))2e−(t
′−t)2/2σ2

dt′, (9)

with a window width of σ = 15°/ω, twists smoothly as required by the symmetry.

Moreover, we can go beyond this, and Fourier-transform this emission from the time to the frequency domain
and from the angle to the angular-momentum domain. When this latter transform is done naively, producing
separate OAM spectra for each of the two orthogonal circular polarizations, as shown in Fig. 5(c), the result is
two separate lines, but if we take the symmetry of the drivers into account and we shift these two spectra by γ
times the spin, to plot the TKAM spectrum of the beam, the two separate trends fuse into a single straight line
to the origin. That is, we observe explicitly that the TKAM Jγ of the qth harmonic is q times the TKAM of the
fundamental driver, which is the smoking-gun evidence of the conservation of TKAM in nonlinear optics.2

6. OUTLOOK

As we have seen, the torus-knot beams we have constructed prove that a new, in�nite class of coordinated-rotation
symmetries is possible for optical beams, once the restriction to monochromatic waves is lifted. This produces
new knotted topologies and new optical singularities, which o�er vast new theoretical vistas and connections but
which are also cleanly accessible to experiment.

These beams have direct applications to high-harmonic generation (a setting which directly inspired the de-
velopments we report here, both via the existence of bicircular polarizations themselves17 as well as through
investigations on what happens if the two components in the bicircular superposition have di�erent linear mo-
mentum32), where they o�er a simple way to obtain bright sources of short-wavelength light with controllable
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orbital angular momentum, with potential applications in magnetic and molecular spectroscopies as well as in
microscopy and lithography.

More generally, the torus-knot beams raise a multitude of questions, including their relationship to quantum
mechanics (can a single-photon state have a well-de�ned TKAM with non-half-integer γ, as discussed in Ref. 8?
what about a few-photon state?) but also e.g. the possibility of replicating these structures and topologies
within a spinor condensate of cold atoms.40 Finally, and more broadly, the discovery of torus-knot optical
beams is an example of the structures which were previously unseen and which become discoverable using the
views and perspectives of strong-�eld physics � a class which also includes the discovery of beams of light with
self-torque41 �, and particularly its focus on a time-domain understanding of the �eld and the emphasis on
polychromatic combinations as a tool for exploration. This class is likely to extend much further, so we hope
that the work presented here serves as inspiration to explore that territory in other contexts, in optics and
beyond.
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