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The topological response of matter to electromagnetic fields is a property in high demand in
materials design and metrology due to its robustness against noise and decoherence, stimulating
recent advances in ultrafast photonics. Embedding topological properties into the enantiosensitive
optical response of chiral molecules could therefore enhance the efficiency and robustness of chiral
optical discrimination. Here we achieve such a topological embedding by introducing the concept of
chiral topological light – a light beam which displays chirality locally, with an azimuthal distribution
of its handedness described globally by a topological charge. The topological charge is mapped onto
the azimuthal intensity modulation of the non-linear optical response, where enantiosensitivity is
encoded into its spatial rotation. The spatial rotation is robust against intensity fluctuations and
imperfect local polarization states of the driving field. Our theoretical results show that chiral
topological light enables detection of percentage-level enantiomeric excesses in randomly oriented
mixtures of chiral molecules, opening a way to new, extremely sensitive and robust chiro-optical
spectroscopies with attosecond time resolution.

The topological properties of the electronic response
to electromagnetic fields in solid state systems, as well
as in photonic structures, are being actively harvested
to obtain robust observables, such as e.g. edge currents
protected from material imperfections in topological in-
sulators [1] or topologically protected light propagation
pathways in their photonic analogs [2, 3]. A similar ro-
bustness in the enantiosensitive optical response of gases
or liquids of chiral molecules is strongly desired for an-
alytical purposes, but is currently missing. While the
first ideas connecting topological and chiral properties of
electronic responses [4–6] or microwave signals in molec-
ular gases [7, 8] are starting to emerge, they do not map
onto the optical response, which encodes the ultrafast,
attosecond, chiral electronic dynamics [9–12].

Topologically non-trivial optical signals can be
achieved by using vortex beams, which carry orbital an-
gular momentum (OAM). They are characterized by an
integer topological charge representing the number of he-
lical revolutions of light’s wavefront in space within one
wavelength [13]. Pertinent work established the chiral-
ity of vortex light in the linear regime [14, 15], exploited
and manipulated ultrafast non-linear optical responses to
vortex beams in atoms [16–18], including the discovery
of new synthetic topologies [19, 20], as well as in chi-
ral molecules [21, 22], where vortex light has also been
successfully used for chiral detection in the hard X-ray
region [23, 24]. However, its natural enantiosensitiv-
ity in the optical domain is weak due to the orders-of-
magnitude mismatch between the wavelength of the light
and the size of the molecules.

This limitation can be overcome by encoding chirality

in the Lissajous figure drawn by the polarization vector of
an electromagnetic wave in time. Fields with chiral Lis-
sajous figures employ only electric-dipole transitions to
drive non-linear enantiosensitive signals, and have been
devised [25], applied in the microwave region [26], and
extended to the optical domain [27]. The handedness of
this light can be controlled with the phase delay between
its frequency components, both locally –at every point in
space – and globally in the interaction region [28, 29].
Here we introduce the concept of chiral topological

light, which takes advantage of the global topological
structure of vortex light and the high enantiosensitivity
of synthetic chiral light [27], embedding robust topolog-
ical properties into the highly enantiosensitive ultrafast
optical response.
Our key idea is to imprint the topological properties

of the vortex beam on the azimuthal phase of the chiral
correlation function h [27] characterizing the handedness
of the synthetic chiral light: arg[h(θ)] = Cθ+ϕL, where θ
is azimuthal angle, C is the topological charge, and ϕL

is the enantiosensitive phase of synthetic chiral light.
We show that the intensity of the nonlinear optical

emission of a chiral molecular medium triggered by such
light depends on both chiral and topological phases of h
as well as the enantiosensitive phase ϕM introduced by
the molecular medium: I(θ) ∝ cos(ϕM − ϕL + Cθ). Us-
ing numerical simulations [47, 48], we demonstrate that
the azimuthal intensity profile is patterned in a topologi-
cally robust and molecule-specific way, leading to a large
enantiosensitive offset ∆θ = π/C between the intensity
maxima (or minima) in opposite enantiomers. What’s
more, the topologically controlled angular offset is robust
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FIG. 1. The concept of chiral vortex light for bicircular counter-rotating mω = −m2ω = 1 beams carrying OAMs ℓω = −ℓ2ω = 1.
a) Tight focusing of bicircular counter-rotating Gaussian beams induces a longitudinal field, resulting in a synthetic chiral field
whose polarization vector draws a chiral Lissajous curve over one laser cycle (inset). b) Evolution of the chiral Lissajous curves

with respect to the azimuthal angle θ at a given radial position ρ =
√

x2 + y2 at z = 0 for a chiral vortex with ℓω = −ℓ2ω = 1.
c) Slices through the electric field distribution at z = 0. The figures show the total intensity of the electric field |E|2, the
absolute value of the chiral correlation function |h(5)| and its phase distribution arg

[
h(5)

]
. The phase distribution of h(5)

describes the spatial distribution of the handedness of light and is characterized by a topological charge C = 6. The x and y
coordinates are scaled to the waist W0 of the beams at the focus.

with respect to imperfections of light polarization and in-
tensity fluctuations, and it persists for small amounts of
enantiomeric excess and can be used to probe chirality
in dilute mixtures.

To demonstrate these ideas, we now focus on a spe-
cific realization of chiral topological light. It involves two
Laguerre-Gaussian beams with counter-rotating circular
polarizations, propagating along the z-axis with frequen-
cies ω and 2ω and OAMs ℓω and ℓ2ω (see Methods). Near
the focus the field develops a longitudinal component
given by Ez = −(i/k)∇⊥ · E⊥ in the first post-paraxial
approximation [30] (see Fig. 1a), taking the light polar-
ization vector out of the (x, y) plane – a prerequisite for
creating synthetic chiral light.

As a result, the Lissajous figure drawn by the polar-
ization vector in one point in space over a laser cycle
becomes chiral (see inset in Fig. 1a). Its handedness is
controlled by the two-color phase ϕ2ω,ω = 2ϕω − ϕ2ω,
which depends on the azimuthal coordinate, forming a
chiral vortex with the topological charge (see Methods):

C = 2ℓω − ℓ2ω + 2mω −m2ω. (1)

Here mrω indicates right (mrω = 1) or left (mrω = −1)
circular polarization. The Lissajous curve drawn by the
polarization vector of the electric field over one laser cycle
changes with the azimuthal angle, switching handedness
2|C| times as the azimuthal angle cycles over one revo-

lution (Fig. 1b). Thus, the superposition of two tightly-
focused OAM beams at commensurate frequencies gives
rise to a chiral vortex, i.e. a vortex beam displaying chi-
rality locally at each given point with an azimuthally
varying handedness characterized by an integer topolog-
ical charge C.

Figure 1c visualizes the chiral vortex by displaying
the beam total intensity |E(x, y)|2, the absolute value
|h(5)(x, y)| and the phase arg[h(5)(x, y)] of the chiral cor-
relation function for OAM (ℓω, ℓ2ω) = (1,−1) and SAM
(mω,m2ω) = (1,−1). Both the chirality and the total
intensity maximize along rings (see Fig. 1c), typical for
vortex beams, while the topological charge C = 6 char-
acterizes the azimuthal phase distribution of the light’s
handedness quantified by the chiral correlation function.

The chiral topological charge C is highly tunable
thanks to its dependence on the OAM of the two beams,
which can take any integer value from−∞ to∞, enabling
chiral vortices with arbitrarily high (and also arbitrarily
low) chiral topological charge. By controlling the OAM
of the beams, we can thus create chiral vortex beams
with controlled properties. If C = 0, then the chiral vor-
tex has the same local handedness everywhere in space.
Otherwise, the field’s handedness displays a non-trivial
spatial structure which is characterized by C.

We have modeled the highly nonlinear response of ran-
domly oriented chiral molecules to this realization of chi-
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FIG. 2. Enantiosensitive high-harmonic spectroscopy us-
ing chiral topological light with topological charge C = 6.
a,b) The near-field spatial profile of H18 for L-fenchone (a)
and R-fenchone (b). The x and y axes are given in units of the
field waist at the focus W0. c,d) The corresponding far-field
spatial profiles for the two enantiomers. Here kx and ky are
given in units of the reciprocal waist of the field at the focus,
1/W0. All profiles are normalized to their maximum value,
which is the same for opposite enantiomers. The angles in the
far-field picture indicate the position of the first peak in the
outer ring of the profile, where we set the zero angle along the
positive kx direction. For C = 6 we have that ϕL = ϕR+π/3.

ral topological light depicted in Fig. 1 using a DFT-based
S-matrix approach (see Methods). Figure 2a,b shows the
near-field intensity of harmonic 18 generated in R- and L-
fenchone for fundamental frequency ω = 0.044 a.u. (1033
nm), peak intensity I0 = 5 · 1014 W/cm2 and a beam
waist of W0 = 2.5 µm at the jet position z = 0.

The azimuthal distribution of the near-field intensity
records both the topology of the driving laser field and
the handedness of the medium. This azimuthal distri-
bution results from the interference between chiral and
achiral multiphoton pathways. The maxima occur at
angles θ = [2πn+ (ϕL − ϕM )] /C, where the two path-
ways interfere constructively. The angular position of the
peaks is therefore enantiosensitive: swapping the molec-
ular enantiomer leads to a π shift in the molecular phase
ϕM → ϕM + π, shifting the minima and maxima of the
intensity pattern by π/C. The number of peaks is con-
trolled by the topological charge |C| = 6. Importantly,
the same topological structure is preserved in the far-field
response, see Fig. 2c,d.

Encoding the topological charge C into the molecular
response and extracting the enantiosensitive offset angle,
controlled by C, allows us to measure the enantiomeric
excess ee = (CR − CL)/(CR + CL) in macroscopic mix-
tures of left- and right-handed molecules with concen-
trations CL and CR. Even for very small values of ee,
we observe the appearance of the C-fold structure in the
inner and outer rings, as well as the corresponding enan-
tiosensitive rotation of the spatial profile, see Figs. 3a,c.

For ee = 0% shown in Fig. 3b chiral channels are sup-
pressed, and a topologically different 2C-fold structure is
observed as a result of the interference between the two
strongest open achiral channels (see Methods and Sup-
plementary Information, SI).

The enantiosensitive rotation of the C-fold structure in
the outer ring is apparent in the angle-resolved, radially-
integrated signal (Fig. 3d). It manifests in the abrupt
switching of the azimuthal angle which maximizes the
signal, as one changes the enantiomeric excess from pos-
itive to negative. The enantiosensitive rotation can be
easily separated by performing a Fourier analysis of the
signal with respect to the azimuthal angle as a function of
the enantiomeric excess. The solid black line in Fig. 3d
shows the phase of the Fourier component f6 oscillat-
ing at the C = 6 frequency of the outer ring signal, as
a function of the enantiomeric excess. A clear π phase
jump is observed at ee = 0%, indicating the switch in
the handedness of the mixture. The sharpness of this
jump (Fig. 3e) characterizes the accuracy of resolving
left- and right-handed molecules in mixtures with van-
ishingly small enantiomeric excess.

We now show how the enantiosensitive signal is robust
with respect to imperfections in the laser beams. First,
we include noise in our simulations (see Methods) via 2%
intensity fluctuations of the driving fields. The red line
in Figs. 3d,e shows the phase of the Fourier component
f6 when noise is included. It is clear that the π jump
of the phase is robust against noise. Positive and nega-
tive enantiomeric excess can be distinguished with high
fidelity due to the extremely sharp jump of the signal
(Fig. 3e) confined to very small values of enantiomeric
excess (about 0.1%) demonstrating topological robust-
ness of the enantio-sensitive signal. Indeed, the topolog-
ical structure is imprinted via azimuthal interference of
chiral and achiral responses and survives as long as the
two-color phase remains stable. Given that in multicycle
two-color fields such phase is routinely controlled with
extremely high accuracy [31, 32], we expect robust en-
coding of topological information in the molecular gas
and robust read-out of the chiral topological signal.

The experimentally pertinent imperfection is also re-
lated to the SAM (imperfect circularity) and OAM con-
tent of the beams. Such imperfections affect the topolog-
ical charge but not the concept of enantiosensitive rota-
tion of the non-linear response in the polarization plane.

We now focus on the analysis of chiral topological
light created by elliptically polarized drivers with im-
perfect circularity (see SI for imperfections in the OAM
content), which brings additional opportunities. To un-
derstand the effect of the imperfect circularity of the
driving field on our observables, we express the ellip-
tical field in terms of two counter-rotating circularly
polarized components: E(ω) = [(1 + ϵ)E+(ω) + (1 −
ϵ) exp(iδ)E−(ω)]/

√
2(1 + ϵ2). Here δ is the phase delay

between the components, which corresponds to the orien-
tation of the resulting elliptical polarization and can be
well controlled in the experiment [33], and |ϵ| ≤ 1 is the
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FIG. 3. Dependence on the enantiomeric excess. a,b,c) The far-field spatial profiles of H18 for an enantiomeric excess
ee = (CR − CL)/(CR + CL) of -4%, 0% and 4% (respectively a,b,c), where positive enantiomeric excess corresponds to a
larger concentration of R-fenchone in the sample. d) Angle-resolved, radially-integrated far-field signal of the outer ring of the
spatial profile (|kW0| > 10) as a function of the enantiomeric excess. The black line on the right shows the phase of the Fourier
component of the spatial profile oscillating at frequency ℓ = 6 as a function of the enantiomeric excess. The overlapping red
line shows the result accounting for intensity fluctuations. The π jump at ee = 0% indicates the enantiosensitive rotation of the
spatial profile. e) Phase of the Fourier component is shown with black solid line, the red dotted line shows the phase obtained
including intensity fluctuations for enantiomeric excess between -5% and 5%.

ellipticity, which is difficult to control with few-percent
accuracy. Note that δ = 0, π correspond to elliptical
light “squeezed” along the x- and y-axis respectively (see
Fig. 4a).

The appearance of the additional counter-rotating
component in the elliptical beam leads to two interre-
lated consequences: (i) the change of the topological
structure of the harmonic emission due to the presence of
new SAM components in the beams (see Eq. 1) leading
to admixture of emission with topological charge C=-2,
and (ii) the appearance of two strong multiphoton path-
ways contributing to the achiral harmonic signal and ef-
fectively masking a weaker chiral signal driven by the
longitudinal polarization. These issues are addressed by
realizing an analogue of the lock-in method, which allows
us to filter out the emission according to its topological
charge and consequently amplify the chiral signal.

The additional benefit of using elliptical drivers is the
access to globally chiral light with non-zero topological
charge leading to total, integrated over the spatial profile,
enantio-sensitive intensity in all harmonic orders, provid-
ing the opportunity to harvest not only 3N harmonics,
but also the naturally intense 3N + 1 harmonics. Fig-
ure 4b shows the total far-field intensity for H18 and H19
as a function of the phase delay δ between the counter-
rotating components of the ω field for both R- (SR, blue
dotted line) and L-fenchone (SL, red dotted line), as well
as the chiral dichroism 2(SR−SL)/(SR+SL) (black dot-
ted line), for globally chiral topological light with fun-
damental beam ellipticity of ϵω = 0.9. The other pa-
rameters are kept as above. The strength of the far-field
signal changes as one rotates the ellipse of the ω field,
while the chiral dichroism in the signal intensity is max-
imized at around 20% for harmonic 19 and around 30%
for harmonic 18.

Fourier-transforming the far-field intensity profile with
respect to the phase delay δ separates the contributions

of different pathways, because they experience different
modulation with δ. The two achiral pathways interfere
in the third Fourier component (δ̃ = 3) with respect to δ,
while the dominant contribution between the chiral and
achiral pathways corresponds to the first Fourier compo-
nent (δ̃ = 1). Figure 4c shows the far-field spatial profiles

for δ̃ = 1 for both enantiomers and both H18 and H19, as
well as the their difference, while the polar plots in Fig. 4d
show the radially-integrated signals and chiral dichroism.
We see that the Fourier filtering recovers the enantiosen-
sitive rotation, although the dominant topological charge
is now C = 2, (Eq. 1 for mω = m2ω = −1). Given the
experimental ability to precisely control the orientation
of the polarization ellipse of the driving infrared pulses,
chiral topological light generated by such drivers stands
out as a robust probe of molecular chirality, capable of
inducing strongly enantiosensitive total intensity signals
as well as giant rotations of intense spectral profiles.

The concept of chiral topological light introduced here
is not limited to vortex beams: other members of the
larger family of structured light beams [34–36] can be
used to create locally and globally chiral topological light.
We envision using radially polarized beams, which are
known to posses strong longitudinal components, cen-
tral to the concept of local chirality, under tight focus-
ing conditions [37]. Skyrmionic beams [38, 39] are the
other exciting candidates, which could also be used in
order to induce topological distributions with radially-
dependent topological charges. We expect to find new
robust and efficient enantiosensitive observables associ-
ated with such fields. From the perspective of struc-
tured light [34–36, 40] the temporally chiral vortex intro-
duced here represents a new kind of polarization singu-
larity, which could be analyzed by extending the current
framework from the monochromatic three dimensional
fields [41, 42] to the polychromatic 3D fields [19, 43, 44].
Our method is not limited to high harmonics. Its ex-



5

FIG. 4. Fourier analysis to recover the enantiosensitive rotation of the spatial profile in the case of elliptical fields. a) Ellipse
of an elliptical field and its orientation in the (x, y) plane with respect to the phase delay δ between the counter-rotating
components. b) Spatially-integrated far-field signal for H18 and H19 as a function of the phase delay δ. The red (blue) dotted
line corresponds to the signal SL (SR) from L-(R-)fenchone, while the black dotted line corresponds to the chiral dichroism
signal 2(SR − SL)/(SR + SL). c) Far-field spatial profiles for H18 and H19 obtained after Fourier transform with respect to

the phase delay δ at the δ̃ = 1 Fourier component for H18 (top plots) and H19 (bottom plots). The left (center) column shows
the results for L-(R-)fenchone, while the right column shows the difference signal SR −SL. d,e) Radially-integrated signal as a
function of the azimuthal angle of the far-field spatial profiles for H18 (d) and H19 (e). The solid red (blue) lines corresponds
to L-(R-)fenchone, while the black line shows the chiral dichroism signal 2(SR − SL)/(SR + SL).

tension to low-order parametric processes such as chiral
sum-frequency generation [45] or chiral nonlinear Stark
shifts [29] has potential for applications in ultrafast con-
trol of artificial chirality [46], for non-destructive enan-
tiosensitive imaging in the UV region, and for exploiting
intrinsically low-order nonlinearities for enantiosensitive
detection in the X-ray domain [23, 24].

Online content

METHODS

Spatial structure of vortex beams creating chiral
topological light

We use two Laguerre-Gaussian beams with counter-
rotating circular polarizations, propagating along the z-
axis with frequencies ω and 2ω and OAMs ℓω and ℓ2ω. We
set the radial indices to pω = p2ω = 0. The generalization
to the case of non-zero radial index is straightforward.
At the focal plane of the beams z = 0, the Cartesian
components of the fields in the transversal plane (x, y)

are

E⊥
±,rω = Erωe

− ρ2

W2
0

(√
2ρ

W0

)|ℓrω|

eiℓrωθeiϕrω

× (ex − imrωey)√
2

, (2)

where Erω is the field strength, W0 is the beam waist,

ϕrω is the carrier-envelope phase (CEP), ρ =
√

x2 + y2

and θ = arctan(y/x) are the radial and azimuthal co-
ordinates, and mrω indicates right (mrω = 1) or left
(mrω = −1) circular polarization. Near the focus this
field develops a longitudinal component along the z-axis
given by Ez = −(i/k)∇⊥ · E⊥ in the first post-paraxial
approximation [30]:

Ez
±,rω = − iErω√

2krω
e
− ρ2

W2
0

(√
2

W0

)|ℓrω|

ρ|ℓrω|−1 (3)

×ei(lrω+mrω)θ

(
|ℓrω| −mrωℓrω − 2ρ2

W 2
0

)
ez.

The total bichromatic electric field E(x, y) = E±,ω +
E±,2ω, combining the longitudinal and transverse field
components for each color E±,rω = E⊥

±,rω + Ez
±,rω (r =

1, 2), is an example of a synthetic chiral light [27].
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Chiral correlation function

We report here the analytical expression for the chi-
ral correlation function [27] h(5)(−2ω,−ω, ω, ω, ω) =
E∗(2ω)·[E∗(ω)×E(ω)] (E(ω) ·E(ω)) for the general case
of two OAM-carrying beams with frequencies ω and 2ω,
SAMs mω and m2ω and OAMs ℓω and ℓ2ω.

h(5)(ρ, θ) = − E2ωE4
ω√

22k2ω
e
−5 ρ2

W2
0

(√
2

W0

)4|ℓω|+|ℓ2ω|

ρ4|ℓω|+|ℓ2ω|−3

(
|ℓω| −mωℓω − 2ρ2

W 2
0

)2

 |ℓω| −mωℓω − 2 ρ2

W 2
0

2kω

[
eimωθ(mω −m2ω)−

e−imωθ(mω +m2ω)
]

+
m2ω

k2ω
(|ℓ2ω| −m2ωℓ2ω − 2ρ2

W 2
0

)e−im2ωθ

}
ei(2ϕω−ϕ2ω)ei(2ℓω+2mω−ℓ2ω)θ (4)

It is easy to verify that both in the counter-rotatingmω =
−m2ω and co-rotating case mω = m2ω the azimuthal
dependence of the chiral correlation function is given by
Cθ, where C = 2(ℓω +mω)− (ℓ2ω +m2ω).

DFT-based SFA simulations in fenchone

The method is adapted from Refs. [27, 47–49] to de-
scribe HHG in a chiral molecule subjected to a strong
field. The macroscopic dipole moment in an ensemble
of randomly oriented molecules arises form the coherent
summation of the contributions from all possible molec-
ular orientations

D(Nω) =

∫
dΩ

∫
dβDΩβ(Nω),

where ω is the fundamental frequency, N is the harmonic
number and DΩβ is the harmonic dipole associated with
a molecular orientation characterized by the three Euler
angles, here denoted in terms of the solid angle Ω and
the angle β. In the strong-field approximation (SFA),
the harmonic dipole for a given orientation [27, 49] is
given by

DΩβ(Nω) = eiNωt′rarec d(UΩβRe[k(t
′
r)])aprop

e−iS(ps,ti,tr) aion ΨD(UΩβRe[k(t
′
i)]),(5)

where d(k) is the recombination matrix element in the
laboratory frame and k(t) = p + A(t). Here UΩβ is
the rotation matrix that transforms the laboratory frame
(e1, e2, e3) to the molecular (i1, i2, i3) frame, with ele-
ments Uij = ⟨ei|ij⟩ for a given orientation.Here ΨD(k) =

⟨k|ΨD⟩ is the overlap between the Volkov state with ki-
netic momentum k and the Dyson orbital, where the lat-
ter is the overlap between the neutral N -electron wave-
function and the ionic (N − 1)-electron wavefunction
|ΨD⟩ = ⟨ΨN−1|ΨN ⟩. The integral over the solid an-
gle dΩ = dαdβ sin(β) is performed using the Lebedev
quadrature method [50], while the integral over the β
angle is done by trapezoid method. In order to find the
rotation matrix, we first assume that the x-axis of the
molecular frame points toward a given Lebedev point,
and then rotate by an angle β around the x-axis. For all
simulations we use a 17th-order Lebedev quadrature (for
a total of 110 points) and 40 β angles evenly distributed
on the [0, 2π] interval.
In the expression for the harmonic dipole, p, ti =

t′i+it′′i , tr = t′r+it′′r are the complex momenta and times
of ionization and recombination resulting from the ap-
plication of the saddle-point method [49]. S(p, ti, tr) =
1
2

∫ tr
ti

dt′ [p+A(t′)]
2
+ Ip(tr − ti) is the action from

the (complex) times of ionization and recombination.
The terms associated with the saddle-point method on
(ti, tr,p) are given by

a(p, ti, tr) = aionaproparec

aion =

√
2π

∂2
tiS

arec =

√
2π

∂2
trS

aprop =

(
2π

i(tr − ti)

)3/2

where the second derivatives of the action are given ex-
plicitly by

∂2
tiS = −E(ti) · k(ti),

∂2
tiS = E(tr) · k(tr),

where E(t) is the electric field and all expressions for the
prefactor are calculated at the complex times.
The transition matrix elements of the right- and left-

handed molecules are related by

DR(k) = −DL(−k), (6)

while for the overlap between the Dyson orbital and the
Volkov wavefunction we have that

ΨR
D(k) = ΨL

D(−k). (7)

The matrix elements and the Dyson orbitals for fenchone
are calculated using DFT methods described in [28, 51].
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Multiphoton picture

The multiphoton picture of enantiosensitive HHG
driven by chiral topological light can be understood by
analyzing the contributing chiral and achiral multipho-
ton pathways. To do so, we classify the multiphoton
pathways by indicating with a subscript the SAM of the
photon, so that e.g. (N)ω+ indicate the absorption of N
ω photons with SAM m = 1 and (−1)ωz indicates the
emission of one ω photon with SAM m = 0.
In the specific case of bicircular counter-rotating fields,

if the field has no longitudinal component along its di-
rection of propagation (i.e. if we consider an achiral field
in the dipole approximation), conservation of SAM re-
sults in a harmonic spectrum with doublets at 3N + 1
and 3N +2 harmonic frequencies, where the 3N +1 har-
monics (3N + 2) co-rotate with the ω (2ω) field [32, 52].
3N harmonic orders are forbidden in achiral media, since
their generation requires absorption of an equal number
of photons from both drivers. In chiral media, the 3N
harmonic orders can instead be generated due to the bro-
ken parity of the medium, but are polarized along the
direction of propagation of the fields (the z-axis in our
case), and thus are not detectable in the far-field. We
label this pathway as

Cz = [(N)ω+, (N)2ω−] . (8)

Focusing on the specific case of 3N harmonic orders, if
the field is chiral (i.e. if it posses a longitudinal compo-
nent along the propagation direction) in the case of achi-
ral media the following multiphoton pathways can now
lead to symmetry-allowed HHG:

AC+ = [(N − 2) · ω+, (2)ωz, (N − 1) · 2ω−] (9)

AC− = [(N − 1) · ω+, (−1)ωz, (N) · 2ω−, (1)2ωz](10)

corresponding respectively to the emission of a photon
with SAM m = 1 and m = −1. We label these path-
ways as achiral pathways (i.e. ACm, with m the SAM of
the harmonic photon), since they occur already in achiral
media driven by a chiral field as they require the absorp-
tion and emission of an odd number of photons. If the
medium is chiral, two new pathways including absorption
of an equal number of ω and 2ω photons open, i.e.

C+ = [(N) · ω+, (N − 1) · 2ω−, (1)2ωz] (11)

C− = [(N − 1) · ω+, (1)ωz, (N) · 2ω−] (12)

corresponding again respectively to the emission of a pho-
ton with SAM m = 1 and m = −1. We label these
pathways as chiral pathways (Cm) since they can occur
only in chiral media. Finding the corresponding OAM of
all pathways indicated above is straightforward, once we
remember that the longitudinal components of the fields
carry OAMs of ℓωz

= ℓω+
+mω and ℓ2ωz

= ℓ2ω− +m2ω.
Obviously, other chiral and achiral pathways including
the absorption of a larger number of z-polarized photons
from either drivers are also in principle accessible: yet,

since the longitudinal component is relatively weak, we
restrict ourselves here to the photon pathways that in-
clude the absorption or emission of the fewest number of
z-polarized photons. Fig. 1a of the SI) shows schemati-
cally the multiphoton pathways Cz, ACm and Cm for the
case of a 3N harmonic order.

The results from the SFA simulations confirm the con-
siderations above; in Fig. 1b of the SI we show the near-
field OAM distributions for H18 in R-fenchone driven by
a field with ℓω = −ℓ2ω = 1 and mω = −m2ω = 1. For
comparison, we also report the OAM content for an ar-
tificial atom with ionization potential equal to fenchone
driven by the same chiral field and the OAM content in
fenchone for an achiral field with same OAM of the driv-
ing beams, obtained by manually setting the longitudinal
component of the field to zero.
When the field is achiral, H18 in an atom is absent, while
in the case of fenchone we observe a ℓ = 0 component po-
larized along the z-axis: this corresponds to the pathway
Cz denoted above. When the field is chiral, circularly
polarized components with ℓ = ±5 are observed for both
the atom and the molecule: these are the achiral path-
ways AC+ and AC− denoted above. Finally, the chiral
pathways C+ and C− correspond to the OAMs ℓ = ±1
and are only seen in a chiral molecule, since they require
the absorption of an even number of photons. Note that
in the far-field only the SAM m = ±1 components are
going to be observed, since m = 0 polarization (corre-
sponding to the Cz pathway in black in Fig. 1b of the SI)
will propagate in a direction orthogonal with respect to
the propagation axis of the beams.

The different OAM content of an atom and chiral
molecule driven by a chiral bicircular field is directly re-
flect in the far-field profile of H18, shown in Fig. 1c of the
SI). In an atom (left figure of Fig. 1c of the SI), where
for a given SAM there is only one contributing OAM,
the far-field profile of H18 is a ring where the intensity
is mostly constant, while in fenchone we observe an az-
imuthal interference pattern with periodicity determined
by the topological charge C, corresponding in modulus
to the net difference between the OAMs of chiral and
achiral pathways. The enantiosensitive rotation of the
spatial profile can be understood from the perspective of
the multiphoton pathways by accounting a shift by π of
the phase of the chiral pathways C± when changing the
molecular enantiomer. The enantiosensitive rotation of
the spatial profile of the high harmonics in the far-field
allows one also to use HHG driven by chiral vortices as a
highly-sensitive method to infer the enantiomeric excess
in a mixture of right- and left-handed molecular enan-
tiomers.

Next order pathways can be identified using the same
approach. In the case of achiral channels the next order
pathway includes the absorption of two more longitudinal
photons (see Fig. 2 of the SI) and is respectively two order
of magnitude smaller. The next order chiral pathway is
four order of magnitude smaller, corresponding to the
absorption of four more longitudinal photons, and so on.
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As mentioned in the main text in the case of an ellip-
tically polarized ω field two new achiral pathways dom-
inate the response, whose photon diagrams we report in
Fig. 3 of the SI. For a 3N harmonic order both new achi-
ral pathways contribute to the final SAM of m = −1 and
are in particular

ACϵ
1 = [(N − 2) · ω+, (2)ω−, (N − 1) · 2ω−] (13)

ACϵ
2 = [(N − 1) · ω+, (−1)ω−, (N + 1) · 2ω−] , (14)

where ω− refers now to the counter-rotating component
of the elliptically polarized field at ω frequency. Since
each elliptically polarized photon carries a phase delay
dependence of exp(iδ), the interference between these two
achiral pathways oscillates with respect to the phase de-
lay as 3δ. This explains why choosing the δ̃ = 1 compo-
nent of the harmonic profile after Fourier analysis allows
one to recover the enantiosensitive rotation of the spatial
profile.

Noise (intensity fluctuations) simulations

In order to include the effect of noise on HHG driven
by chiral vortex light, we take the following approach.
For a given electric field strength E0 (which we assume
to be the same for both fields) the Laguerre-Gaussian
beam is given in the near-field by E(r) = E0LGl,p(r),
where LGl,p = LGl,p(r)eL(r). Here LGl,p is a Laguerre-
Gaussian mode and eL is the polarization vector of the
field. The corresponding laser intensity is I0 = |E0|2. We
then pick a value for the laser intensity from a normal
distribution of noise centered at I0 with width γ. We
call this electric field intensity I1. Then, for each point
r in the focus, we introduce intensity fluctuations such
that at a given position the electric field strength is given
by

I(r) = I1 LGl,p(r)(1 + δI(r)), (15)

where δI(r) = Cλ(r). λ(r) is chosen from a Gaussian
distribution centered at zero with width 1 and C = 0.1
is a constant. There is therefore 68.2% probability that
the fluctuation is below 0.1% of the signal at the given
point. We produce 16 electric fields using this approach,
choosing a central intensity of I0 = 5 · 1014 W/cm2

with width γ = 3.51 · 1013 W/cm2, and calculate the
resulting far-field picture for left- and right-handed fen-
chone. The average intensity fluctuations are on the or-
der of 2%, on par with standard experimental param-
eters [53]. We then scan the enantiomeric excesses ee
between −100% and 100% in 1001 steps. For each step,
we pick a random index i between 1 and 16, selecting one

of the far-field profiles for R- and L-fenchone d
R/L
i . The

resulting far-field image at a given enantiomeric excess
ee = (CR − CL)/(CR + CL) for normalized concentra-
tions CR +CL = 1 is given by dee = CRd

R
i +CLd

L
i and

the phase of the ℓ = 6 Fourier component of the outer
ring kW0 > 10 is then calculated. We then repeat the
procedure 16 times and for each enantiomeric excess cal-
culate the mean phase as ϕ̄ =

∑16
i=1 ϕi/16. The result is

the red solid line shown in Fig. 3e.

Data availability

The data that supports the plots within this paper
and other findings of this study are available from the
corresponding authors upon reasonable request.
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