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Tunnelling is a renowned concept in modern physics that highlights the peculiarity of non-classical
dynamics. Despite its ubiquity questions remain. We focus on tunnelling through the barrier
created by a strong laser field that illuminates an atomic target, which is essential to the creation
of attosecond pulses and ultimately all attosecond processes. Here, we present an optical tunnelling
event that, unexpectedly, happens at a time when the instantaneous electric field is zero and there
is no barrier. We discover this strong-field ionisation event by introducing the colour-switchover
technique – the gradual replacement of a laser field with its second harmonic – within which the
zero-field tunnelling appears when the two amplitudes are equal. This event is a topologically stable
feature and it appears at all Keldysh parameters. The tunnelling without a barrier highlights the
disconnect between the standard intuition built on the picture of a quasi-static barrier, and the
nonadiabatic nature of the process. Our findings provide a key ingredient to the understanding
of strong-field processes, such as high-harmonic generation and laser-induced electron diffraction,
driven by the increasingly accessible class of strongly polychromatic light fields.

The quantum-mechanical tunnel effect is an emblem-
atic example of the peculiar and counter-intuitive be-
haviour of quantum particles, which can ‘tunnel’ through
a potential-energy barrier that classical physics would
deem impassable. Although the discovery of tunnelling
dates back almost a century [1], there are still many open
questions, such as how to experimentally measure the
time the particle spends under the barrier [2, 3].

In nonlinear optics, tunnelling appears in the context
of strong fields, in which the illuminating laser field is
strong enough to distort the atomic Coulomb potential.
The barrier created by the combination of the atomic and
optical potentials allows the electron to escape from the
atom [4] (see Fig. 1(a)). In this work, we present strong-
field ionisation events for an atom subjected to a bichro-
matic laser field, and report on a nonadiabatic tunnelling
event which, counter-intuitively, happens at a time when
the instantaneous electric field is zero (see Fig. 1(b)).

Ionisation by strong laser fields is fundamental for
the whole field of attosecond science, which aims at
probing electronic and nuclear motion on its natural
timescale using light pulses of attosecond duration [5].
The two major physical effects are above-threshold ioni-
sation (ATI) [6, 7] and high-harmonic generation (HHG).
In ATI, the photoelectron momentum distributions of the
freed electrons are captured to give information about
the electronic structure of the target. The process of
HHG is understood in terms of three steps: strong-field
ionisation, propagation in the laser field and recombina-
tion with the parent ion, upon which an attosecond pulse
is emitted [8–10]. Hence, full control of the created at-
tosecond pulses requires a reliable understanding of the
process of strong-field ionisation.

The interaction of intense ultrashort laser pulses with
matter is most commonly described using the strong-
field approximation (SFA) [7, 11]. Following the works
of Keldysh, Faisal, Reiss (KFR) and Peremelov et al. [12–
15] the total ionisation yield in such an oscillating laser
field is linked to the tunnelling rate in a static electric
field, and hence, a static barrier. Within the SFA, ionisa-
tion is described in terms of discrete events in time which
are identified by saddle points of the electron’s complex

FIG. 1. Schematic view of field-induced tunnelling with
the laser field’s vector potential, the atomic binding poten-
tial and the resulting barrier in the (a) quasi-static and (b)
nonadiabatic regime in which the laser field changes during
the process.

action. This formalism gives rise to the well-established
and intuitive picture of quantum orbits [16, 17], and im-
plies that ionisation is most likely to happen when the
field is at its maximum.

In recent years, advances in light generation and mea-
surement techniques allow (and ask) for a more detailed
description of the strong-field tunnel ionisation process.
Numerous studies focus on the nonadiabaticity of the
phenomenon, taking into account the dynamics of the
barrier [18–22], as well as the effects of the Coulomb
potential on the various stages of the tunnelling pro-
cess [23, 24]. For example, nonadiabatic effects are es-
sential for the interpretation of tunnelling times in the
so-called attoclock technique [25–31].

One of the key tools to investigate nonadiabatic effects
are tightly controlled ‘tailored’ polychromatic drivers.
Perturbative second-colour fields are often used as a tem-
poral gate for the ionisation process and to control the
harmonic signal [32–36]. Furthermore, strongly poly-
chromatic drivers, where the two combined fields have
similar amplitudes, have become experimentally feasi-
ble and are increasingly popular in attosecond science.
They allow for a versatile shaping of the harmonic radi-
ation both in intensity and polarisation, and thus offer
control over the main features of the emitted attosecond
pulse [37–41]. Generic polychromatic drivers are there-
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fore necessary to build a comprehensive understanding of
the strong-field processes, starting from their first step –
tunnelling.

In this letter we present a tunnel ionisation event that
happens in a two-colour strong-field setup at a time when
the instantaneous electric field is zero and hence there is
no barrier. This counter-intuitive finding arises as part
of the colour switchover, which describes the continuous
tuning from a monochromatic linearly polarised driving
laser field to its second harmonic. The discrete tunnel
ionisation events are analysed in terms of saddle points
of the semi-classical action, using the strong-field ap-
proximation. We present how each ionisation event con-
tributes to the final spectrum, as well as the respective
quasi-classical trajectories of the direct photoelectrons.
We show how the results scale with the wavelength, and
can ultimately conclude that the ionisation event that
happens at zero field is a topologically stable feature of
the strongly bichromatic field. The tunnelling event that
happens without a barrier has a weak, but non-zero con-
tribution to the spectrum, which emphasizes the need
for further explanation of the under-the-barrier dynam-
ics. Moreover, experimental observables that show the
significance of this event have yet to be found.

To this end, we consider ATI within the SFA approach.
The ionisation amplitude in atomic units for a given final
(drift) momentum p is described by the integral [42]

Ψ(p) =

∫ ∞

−∞
P (p+A(t)) e−iS(p,t) dt (1)

with the semi-classical action

S(p, t) =

∫ t

−∞

[
Ip +

1

2
(p+A(t′))

2
]
dt′ . (2)

Here, the vector potential of the driving laser field is
A(t) = −

∫
E(t) dt, and the slowly varying prefactor

P(k) = i
(
Ip + k2

/2
)
φ0(k) encodes information about the

dipole moment with ground state φ0 and ionisation po-
tential Ip. Employing the saddle-point method then re-
duces the integral (1) to a summation of contributions at
the stationary points of the action [43–45]. Those saddle
points ts are given by

∂S

∂t
(p, ts) = 0 , (3)

are in general complex numbers, topologically conserved
and ultimately correspond to the discrete ionisation
events within one laser cycle.

The saddle-point method is the established approach
for scenarios in the strong-field tunnelling regime due
to its unique combination of intuition and quantitative
modelling. It rigorously links the mathematically strict
formalism of saddle points to the intuitive picture of dis-
crete ionisation events which then lead to distinguish-
able quantum orbits. In the following we apply it to the
colour-switchover scenario.

We suggest the colour switchover as a simple and es-
sential technique for understanding strong-field physics
with strongly polychromatic drivers. We consider a lin-
early polarised laser field which is gradually replaced by

A B C D

FIG. 2. Left column: Total waveform of the bichromatic
field (4) (black solid line) and of its components (ω-field:
red dashed, 2ω-field: blue dotted) throughout the colour
switchover performed by increasing the mixing angle θ from
8◦, through 15◦, θ∗ ≈ 19◦, 25◦, 45◦ to 80◦, (a-f) respectively.
Right column: Im(S(p = 0, t)) over the complex ωt-plane
(g-l) for the fields presented on the left and Ip = 0.5. Sta-
tionary points ωts are highlighted by coloured dots and are
referred to by their labels shown in panel (l). Their contour
lines for constant real action are drawn as grey lines, with the
resulting integration contour in black.

its second harmonic, such that the resulting electric field
can be understood as a two-colour field where we increase
the amplitude ratio between the ω and the 2ω compo-
nent, while keeping the total intensity constant. That is,
the total electric field is given by

E(t) = E1 cos(ωt)− E2 cos(2ωt) (4)

with the amplitudes E1 = E0 cos θ and E2 = E0 sin θ
defining the mixing angle 0◦ ≤ θ ≤ 90◦, which corre-
sponds to tuning the amplitude ratio R = E2/E1 = tan(θ)
from 0 to infinity. The two constituent fields and their su-
perposition (4) are shown in the left column of Fig. 2 for
several values of θ, demonstrating the colour switchover.

This scenario is of special interest because the num-
ber of contributing saddle points, i.e., the number of
discrete ionisation events, per cycle of the fundamental
2π/ω changes. Clearly, for the ω-dominated field there
are two ionisation events per cycle, namely at Re(ωt) = 0
and π in Fig. 2(a), whereas for the 2ω-dominated field
there are four ionisation events per cycle, at around
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Re(ωt) = −π/2, 0, π/2 and π in Fig. 2(f). As saddle
points are topologically protected mathematical objects,
and therefore stable features of the system, this colour
switchover raises a number of core questions:

• Where do the new ionisation events come from?
• When do they start to contribute?
• Where do they go?
• Which are the new ones and which are the old ones?

Answering those questions is nontrivial and requires a
rigorous mathematical approach. An often neglected
part of applying the saddle-point method (also called
method of steepest descent) to the integral (1) is that
the summation does not include all saddle points ts of
the action (2), but only those which are part of a valid
integration path. There typically exist numerous solu-
tions to (3) from which we need to select the ones which
are contained in the steepest-descent route. In the right
column of Fig. 2 we therefore present contour maps of
the imaginary part of the action over complex time for
the fields on the left column of Fig. 2. We use a total
incoming intensity I0 = E0

2 = 4 × 1014 W/cm2, funda-
mental frequency ω = 0.057 a.u. (λ = 800 nm), zero drift
momentum, and a hydrogen target (Ip = 0.5 a.u.). The
saddle points and their respective level lines are high-
lighted with grey solid lines and the resulting integration
contour is shown in black.

As one might expect, in the early stage of the colour
switchover the integration contour only passes through
two saddle points, which we call A (red) and D (yellow).
We find additional saddle points B (green) and C (blue)
coming in from high imaginary parts in Fig. 2(g) and (h),
but they are not yet part of the integration contour and
hence do not yet contribute to the ionisation amplitude.
As we subsequently increase the amplitude ratio they
move closer towards the real axis and C eventually coa-
lesces with the ‘old’ saddle point A to one second-order
saddle point as shown in Fig. 2(i). The point where the
coalescence happens is at θ ≈ 19◦ and we denote it by
θ∗ ≡ arctan(R∗). For the rest of the switchover, the
three saddle points A, B and C move apart until they
spread out evenly parallel to the real axis (Figs. 2(j-l)).
In Fig. 2(l) we find the expected structure of four evenly
spaced ionisation events A, B , C and D for the almost-
monochromatic 2ω-field shown in Fig. 2(f).

In general, how and when the saddle points B and C
enter the integration contour depends on the drift mo-
mentum. Considering saddle points for non-zero drift
momentum p yields a more complicated manifold of so-
lutions in which the coalescence marks a unique branch
point that will be dealt with in a future publication.
Here, we focus on the special case of zero momentum
because therein saddle point B corresponds to the tun-
nelling event that eventually happens without a barrier.

Strictly speaking, whenever two saddle points coalesce,
or are in close proximity, the saddle-point method breaks
down. Approximating the integral (1) then requires
higher-order methods, such as uniform expansions [46],
which for our case are complicated by the presence of the
third saddle point. A more detailed exploration follows in

an upcoming publication. The coalescence at R∗ ≈ 0.36
marks the amplitude ratio following which the ‘new’ sad-
dle points B and C are part of the integration contour.
That is, for all amplitude ratios above R∗ the new saddle
points (along with A and D) indubitably contribute to
the total ionisation amplitude.

Consider that this change in number of contributing
saddle points happens surprisingly early within in the
colour switchover. Let us focus on the saddle point B ,
which is at Re(ωt) = 0. Examining the electric field
at t = 0 we find that it marks a contributing ionisa-
tion event even before the electric field has changed sign
(E(0) > 0, as in Fig. 2(d)) and therefore implies tun-
nelling uphill. Most importantly, and as advertised, this
tunnel ionisation event also contributes to the total ioni-
sation amplitude at the point at which the electric field is
zero (E(0) = 0, Fig. 2(e)) and there is in fact no barrier
formed (Fig. 2(k), saddle point B at ωt ≈ 0 + 1.1 i).

This finding is deeply surprising when thinking of
strong-field ionisation in terms of the well-established
two-step model derived from the quasi-static intuition.
One possible explanation is to take into account the
nonadiabaticity of the process using the complex-time
model explained in [44]. Thereupon the saddle point
ts marks the moment the electron enters the barrier,
wherein the imaginary part is understood as the time
the electron spends under the barrier, and the real part
is the moment it appears in the continuum (read: exits
the barrier). As, in our case, the electric field is non-zero
during that tunnelling time, i.e., for the time between
ts and Re(ts), one could argue that there is a barrier
formed which allows the electron to tunnel. However, the
dynamics in imaginary time in this case are still unclear.

For non-zero momenta the situation is essentially the
same as for p = 0. As the field shape depends smoothly
on the mixing angle, for any given drift momentum we
can always find an ionisation event happening at a time
when the electric field is zero. We illustrate this using
the following vice-versa consideration. For the situation
of equal amplitudes of ω and 2ω-field (R = 1) the ionisa-
tion time depends smoothly on the momentum. Hence,
for a small positive (negative) drift momentum the ioni-
sation happens shortly before (after) the field extremum.
For the spanned ionisation window around t = 0 the elec-
tric field is then non-zero. However, inspecting Fig. 2(e)
shows that the respective instantaneous field amplitude
ultimately is still comparatively low and leaves us sur-
prised about the existence of an ionisation event.

To further expand on the intuitive understanding of
the ionisation events, we show the electrons’ displace-
ment in the electric field given by

x(t) =

∫ t

ts

(p+A(t′)) dt′ . (5)

The temporal integration here follows a two-legged con-
tour in the complex plane, starting from the complex-
valued saddle point t = ts downwards to the real
axis [44, 47, 48]. From t = Re(ts) onwards, the in-
tegration is carried out along the real axis. In Fig. 3
we show the resulting semi-classical trajectories for all
four ionisation events shown in Fig. 2(l), and also indi-
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FIG. 3. Semi-classical trajectories (5) for the field with the
four labelled ionisation events shown in Fig. 2(e). The semi-
transparent bands show the trajectories for solutions with
|p| < 0.05.

cate the trajectories for solutions with non-zero momen-
tum. In general, the displacement at the tunnel exit
xexit = Re

[
x(Re(ts))

]
is non-zero for all trajectories,

which confirms that the electrons are indeed freed via
tunnel ionisation. Upon appearance in the continuum
we find that the trajectories stemming from ionisation
events C and D are led away from the core, as expected.
By contrast, electrons freed in ionisation events A and in
particular B are driven back towards the core. In gen-
eral, we find that upon their return all three trajectories
A, B and C remain in the core’s vicinity for a significant
fraction of the cycle (at around ωt ≈ 2π). These trajec-
tories are therefore highly susceptible to Coulomb effects.
As explained above, the ionisation event at zero field is a
stable feature of the colour switchover and remains even
for arbitrary phase shifts between the two constituent
fields. We could choose the location of the zero-field
tunnelling event such that the effects of the Coulomb
forces are minimised. However, our primary interest is
to show the existence of a tunnel ionisation event, within
the SFA framework, that happens at a time when there
is no barrier.

We now turn to the contribution of each ionisation
event to the total ionisation amplitude. Applying the
saddle-point method (SPM) to the SFA integral (1) re-
sults in a summation over the discrete ionisation events
that are part of the integration contour shown in the
right column of Fig. 2:

ΨSPM(p) ≈
∑
s

Ψs
SPM(p)

=
∑
s

√
2π

iS′′ P (p+A(t)) e−iS(p,ts) . (6)

For the atomic target we assume a hydrogenic short-
range potential such that P(k) = i/

√
π (2Ip)

1
4 . We are

especially interested in the contribution of the zero-
field ionisation event, B . Hence, in Fig. 4(a) we show
the spectrum |ΨSPM(p)| (black) for the field shown in
Fig. 2(e), with the contributions of each ionisation event s

in Fig. 2(k). We find that the contribution of this specific
ionisation event is small compared to that of A and C ,
and particularly D . In fact, for the majority of the colour
switchover (field shapes as in Figs. 2(c-f)) the spectrum is
clearly dominated by the contribution of D such that the
contribution of orbit B is hidden below the others and
does not have an observable effect. This becomes obvi-
ous when we recall that the ionisation for orbit D hap-
pens when the instantaneous field amplitude is largest
(around Re(ωt) ≈ π, see Fig. 2 left column), and that
the instantaneous electric field enters exponentially into
the ionisation amplitude via the action (2).

Because the theoretical SFA framework connects to,
and is often benchmarked against, the quasi-static the-
ory, we explore how the relevance of the zero-field tun-
nelling event changes as we approach the adiabatic limit.
For that, in Fig. 4(b) we present each orbit’s integrated
contribution to the spectrum,

Ys =

∫
|Ψs

SPM(p)|2 dp , (7)

for various Keldysh adiabaticity parameters γ =√
Ip/2Up. The ponderomotive energy Up for the equal-

amplitudes field configuration of Fig. 2(e) is γ =

4ω
√

Ip/5I0. We keep Ip and I0 constant such that the dis-
played range of Keldysh parameters corresponds to wave-
lengths 330 nm ≤ λ ≤ 3000 nm. From the quasi-static
limit (γ ≪ 1) to the multi-photon ionisation regime
(γ > 1), the orbit D dominates the spectrum, followed
by A and C , which contribute equally. Their relative
contribution remains almost unchanged across the range
of Keldysh parameters. In contrast, we find that the con-
tribution of orbit B decreases as we approach the quasi-
static regime. Note, that the electric field is zero at t = 0
independently of the Keldysh parameter and for the con-
sidered range always hosts a contributing saddle point as
well. Ultimately, the tunnelling event at zero field loses
significance for the total spectrum as we move towards
the adiabatic limit. Although this matches our quasi-
static intuition and is somewhat reassuring, we want to
emphasize that the experimentally relevant parameters
above result in γ = 0.67. Thus, within the realms of
typical configurations like ours, the contribution of orbit
B must not be ignored.

With the change of driving laser field parameters it
is essential to ask if the tunnelling event without a bar-
rier remains a contributor to the total ionisation ampli-
tude in the quasi-static limit. That is, we need to verify
whether the saddle point B , which for R = 1 corresponds
to the tunnelling without barrier is always part of the
integration contour even if the wavelength changes. As
explained earlier, for a given configuration, the saddle
point B (as well as C ) needs to be taken into account
from the coalescence point R∗ on, i.e., for all amplitude
ratios R > R∗. In Fig. 5 we show that the amplitude ratio
R∗ decreases monotonically with the Keldysh parameter
(solid line). The dependence can be well approximated
by the asymptotes 1− 3

√
135/32 γ

3
2 in the small-wavelength

limit and by 1/4γ in the long-wavelength limit (dashed
and dotted lines respectively). Most importantly, Fig. 5
shows that the saddle point B for R = 1 is part of the
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FIG. 4. (a) Magnitude of the spectral ionisation ampli-
tude |ΨSPM| (black), and the contribution |Ψs

SPM| of each of
the four contributing ionisation events shown in Fig. 2(k) for
atomic hydrogen ionised by the field in Fig. 2(e). For p = 0,
the contribution B (green) stems from the ionisation event at
zero field. (b) Scaling of the total ionisation amplitude per
orbit Ys for a field shaped like the one shown in Fig. 2(e), for
a range of Keldysh parameters γ. Note that the total contri-
bution (7) of A and C are equal.

integration contour for all γ > 0 (shaded region). We
therefore conclude that the ionisation event at zero field
is a topologically stable feature of the strongly bichro-
matic driving field.

The counter-intuitive nature of the tunnelling without
a barrier makes it highly desirable to work towards ex-
perimental realisation of this phenomenon. For this to be
feasible, we need to identify an observable for which the
tunnel ionisation event at zero field produces detectable
signatures. Then, naturally, we strive for a comparison
both with solutions to the time-dependent Schrödinger
equation (TDSE) and with experimental data.

As can be seen in Fig. 4(a), the spectrum is typically
dominated by orbit D which disguises the effect of B .
One proposal to unveil the contribution of B is therefore
to ‘remove’ D . This can be achieved by performing a
colour switchover from ω to 3ω and is computationally
easily modelled by neglecting the contribution of saddle
point D from the summation in (6). However, even then,
the tunnel ionisation event at zero field is too small to
be detected in the spectrum directly.

FIG. 5. Scaling of the amplitude ratio at which the saddle-
point coalescence happens over a range of Keldysh parame-
ters γ, as in Fig. 4(b). In dashed lines, asymptotes for the
behaviour in the γ ≪ 1 and γ > 1 regime are shown. The
grey line marks the configuration used in Fig. 2, for which
γ = 0.67 and the coalescence happens at R∗ ≈ 0.36.

It remains an open question for now if the event shows
a signature in holographic two-dimensional interference
patterns, which generally arise when using the ellipticity
of the driving field to steer electron trajectories time-
dependently. Moreover, whether TDSE simulations that
take into account the effects of the Coulomb potential as
well as the possibility of rescattering are able to isolate
the contribution of the zero-field tunnelling event is still
unclear. Lastly, performing a colour switchover in the
driving field of HHG raises similar questions to the ones
addressed here for ATI.

In conclusion, here we present strong-field tunnel ion-
isation events in the colour switchover from a funda-
mental laser field to its second harmonic. This scheme
generically covers all possible two-colour fields like (4),
in which the ionisation process is usually understood in
terms of classically derived intuition, based on KFR the-
ory and ultimately quasi-static assumptions. In the case
of equal-amplitude mixing of the two constituent fields,
we find a nonadiabatic tunnel ionisation event that hap-
pens at a time when the instantaneous electric field is
zero (see Fig. 2(e)) and thereby challenges that intuitive
picture of the process. The existence of the event is a
topological feature of the two-colour field (4) with equal
amplitudes, and has a non-zero contribution to the total
spectrum from the quasi-static limit through the multi-
photon regime. The classical trajectories show the need
for further exploration of the under-the-barrier dynamics
as well as the Coulomb effects on that specific trajectory.
Moreover, although we find that the event only has a
small contribution to the spectral ionisation amplitude,
we expect it to play a detectable role in the heterodyne
diffraction patterns of the photoelectron momentum dis-
tributions. These questions thus invite the search for
an observable that provides experimentally measurable
signatures of the tunnelling at zero field.
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