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Light-matter interactions within the strong-field regime, where intense laser fields can ionise a target via
tunnelling, give rise to fascinating phenomena such as the generation of high-order harmonic radiation
(HHG) and, correspondingly, light pulses of attosecond duration. On the atomic scale, these strong-field
processes are naturally described in terms of highly-oscillatory time integrals which are often approximated
using saddle-point methods. These methods simultaneously simplify the calculations and let us understand
the physical processes in terms of semi-classical electron trajectories, or quantum orbits. However, applying
saddle-point methods for HHG driven by polychromatic laser fields without clear dynamical symmetries
has remained challenging. Here we introduce Picard-Lefschetz theory as a universal and robust link be-
tween the time integrals and the semi-classical trajectories, for arbitrary driving laser fields. The continuous
deformation of the integration contour towards so-called Lefschetz thimbles allows an exact evaluation of
the integral, as well as the identification of relevant quantum orbits, independently of dynamical laser field
symmetries or quantum orbit classification heuristics. The latter is realised via the “necklace algorithm”, a
novel solution to the open problem of determining the relevance of saddle points for a two-dimensional in-
tegral, which we introduce here. We demonstrate the versatility and rigour of Picard-Lefschetz methods by
studying Stokes transitions and spectral caustics arising in HHG driven by two-colour laser fields. For exam-
ple, we showcase a quantum-orbit analysis of the colour switchover, which links the regime of perturbative
two-colour fields with that of fully bichromatic driving fields. With this work, we set the foundation for a rig-
orous application of quantum-orbit based approaches in attosecond science that enables the interpretation

of state-of-the-art experimental setups, and guides the design of future ones.

I. Introduction

In quantum mechanics, transitions between states can be
described using Feynman’s path integral formalism, which
considers all possible trajectories connecting initial and fi-
nal states. Saddle-point methods (SPMs) allow this highly
oscillatory integral to be approximated as a discrete sum
over dominant, classical-like paths, providing both compu-
tational efficiency and physical insight. In attosecond sci-
ence, a field with the goal of measuring atomic, electronic
and molecular dynamics on their natural timescale, SPMs
have played a central role from the outset [1-3]. To probe
the ultrafast dynamics, attosecond science relies on highly
nonlinear light-matter effects such as above-threshold ion-
isation (ATI) and high-order harmonic generation (HHG).
The theoretical description of those optical processes within
the strong-field approximation has been linked to a semi-
classical picture of discrete electron trajectories, known as
the quantum orbit formalism [4-6]. However, the technolog-
ical development of the past decades has enabled the use of
more complex laser fields to drive the nonlinear optical pro-
cesses. With that, the framework of SPMs has begun to show
its limitations. Specifically, in the absence of temporal sym-
metries in the laser waveforms it becomes unclear which
trajectories (i.e., which saddle points) contribute meaning-
fully to the dynamics.

Here, we introduce the methods of Picard-Lefschetz the-
ory [7-10] — the formalised generalisation of all SPMs — as a
rigorous and universal approach to the most common inte-
grals arising in attosecond science. Picard-Lefschetz theory
suggests a rigorous mathematical definition of the Feynman
path integral in terms of steepest descent manifolds con-
nected to saddle points of the phase function [11]. This al-
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lows the analysis of phenomena that were previously inac-
cessible to semi-classical methods like spectral caustics [12—
17], and with that a deeper understanding of the underlying
quantum dynamics.

Within attosecond science, the strong-field approxima-
tion (SFA) is the main theoretical framework to describe
the microscopic response of a gas atom subjected to a
strong driving laser field (peak intensity comparable to the
Coulomb force). The SFA offers an intuitive description of
the process of HHG in terms of the three steps (1) tunnel ion-
isation, (2) propagation in the continuum and acceleration
by the driving field, and (3) recombination with the parent
ion to emit a high-energetic photon [1, 18, 19]. The spec-
trum of high-energy photons typically covers a long range
of frequencies (the HHG plateau), temporally corresponding
to a train of short flashes of light — laser pulses of attosecond
duration. To understand and control the properties of this
attosecond pulse it is necessary to understand the process
of HHG for a range of different driving laser fields.

Non-symmetric driving fields are of growing interest be-
cause they have demonstrated precise control over the tem-
poral and polarisation characteristics of the created HHG
spectra [20-24] and offer additional insights to the quantum
dynamics at play [25, 26]. These tailored light fields are of-
ten a combination of laser fields of different frequencies and
polarisation. For example, a weak commensurate second
colour field can be used to modify strong-field ionisation
such that an additional phase delay scan allows to measure
the intricate details of the tunnelling process [27-30]. Going
beyond the perturbative regime when adding a second field
can extend the range of generated harmonic frequencies,
increase the overall signal and ultimately change the spec-
tral and temporal properties of the created attosecond pulse
[22, 23, 26, 31-34]. Lastly, by creating three-dimensional
polarisation states of light it becomes possible to distin-
guish between chiral enantiomers of molecules [35, 36]. The
heuristics that were established to describe the atomic re-
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sponse in terms of discrete quantum orbits (corresponding
to the different saddle points in the SPM), however, were de-
veloped for simple, monochromatic and one-dimensional,
driving field shapes. They fail for those generic drivers with
arbitrary waveform.

To overcome these limitations we need to advance our
understanding of SPMs. Their mathematical backbone
and the generalised approach to highly-oscillatory and only
conditionally convergent integrals is Picard-Lefschetz the-
ory [7-9]. As such, it has been introduced to solve high-
dimensional path integrals in quantum field theories and
was applied to solve path integrals in other areas of physics
[10, 37-41]. The fundamental idea is that there exists a
continuous deformation (‘the downwards flow’) of the in-
tegration contour into the complex plane such that - eval-
uated along this new contour — the integrand oscillations
minimise, while giving an exact formulation of the integral.
This new contour is called the Lefschetz thimble and passes
through the relevant saddle points of the phase function of
the integrand. Vice versa, this means that we can identify
relevant saddle points by checking if the inverse deforma-
tion (i.e., the upwards flow) leads us back to the original in-
tegration contour.

The aim of this paper is to introduce Picard-Lefschetz the-
ory to attosecond science. We demonstrate its effectiveness
by addressing two challenges that remain inaccessible to the
established semi-classical quantum-orbit methods: tackling
configurations that exhibit caustics (where multiple saddle-
point solutions coalesce), and, more generally, obtaining the
strong-field response throughout any continuous parameter
scan that changes the number of relevant trajectories. For
that, this work is structured as follows. We begin in Sec. II
with a brief overview of the existing quantum-orbit formal-
ism for the ionisation amplitude for strong-field tunnelling
and the dipole response for HHG, as examples of integrals
over one and two dimensions, respectively. Sec. III intro-
duces Picard-Lefschetz theory, and in particular the two
procedures for evaluating highly-oscillatory integrals that
can be derived from it. The first is the numerical implemen-
tation of the continuous downwards flow that deforms the
integration contour into Lefschetz thimbles. Secondly, we
have developed the “necklace algorithm” to identify which
of the critical points are relevant contributors in the saddle-
point approximation of a two-dimensional integral.

These methods are then applied to strong-field physics
in Sec. IV, where we consider HHG from two-colour driv-
ing fields as an example. There, we present the harmonic
response for driving field configurations that produce swal-
lowtail caustics over a two-colour intensity ratio and phase
delay scan. Moreover, we use the saddle-point based ap-
proach for the analysis of relevant electron trajectories in a
setup where we gradually replace a monochromatic driver
with its second harmonic — a technique termed colour
switchover [42] - to demonstrate the versatility of our meth-
ods. Our specific implementation has been deposited in
Ref. [43].

II. Quantum-orbit approaches in strong-field theory

The response of an atom to illumination by a laser pulse
whose peak intensity is comparable with the strength of the
binding Coulomb forces between nucleus and electrons can
be described using the so-called strong-field approximation

(SFA) framework [1, 44-46]. The SFA consists of a set of ap-
proximations, most importantly assuming only one single
active electron which is either in the ground state or in a
Volkov-type continuum state where its motion is dictated
entirely by the driving laser field and the drift momentum,
neglecting the ion’s Coulomb potential. Generally, these
approximations can be extremely restrictive, but for laser
peak intensities in the order of 10'*W/cm? and atomic gas
targets, the SFA is indeed the preferred theoretical model,
and in good agreement with experimental measurements
[46]. Apart from numerical simplicity, the SFA also offers a
quite intuitive understanding of the processes happening in
these parameter ranges. Strong-field effects well-described
within the SFA include above-threshold ionisation (ATI),
non-sequential double-ionisation, high-harmonic genera-
tion (HHG) etc. [47]

In this paper, we focus on the two processes of direct
ATI (via strong-field tunnelling) and HHG. For both pro-
cesses, the atomic response can be written as a Feynman
path integral with the semi-classical action as an exponen-
tiated phase function in the integrand [1, 5, 6]. That is,
for ATI we consider the ionisation probability and for HHG
we consider the radiation dipole associated with the emit-
ted photons. These types of integrals are highly oscillatory
and can be solved using methods of stationary phase, also
known as saddle-point methods [48, 49].By identifying sta-
tionary points of the exponent, i.e., saddle points of the ac-
tion, the atomic response can be expressed in terms of Gaus-
sian contributions from distinct ionisation events (for ATI)
and quantum orbits (for HHG), in analogy to the least-action
principle in Feynman’s path integral formalism.

However, in rewriting the continuous path integral to a
sum over discrete contributions there are (at least) two intri-
cacies that are often overlooked: Firstly, the summation only
runs over a strict subset of stationary solutions of the action.
For example, all saddle point solutions have their complex-
conjugated counterpart which are typically neglected be-
cause the resulting contribution would be exponentially
large and hence, unphysical [45, 50-52]. And secondly, in
situations were saddle points are in close vicinity, their con-
tribution is not actually of Gaussian shape. A prominent in-
stance of this is the high-harmonic cutoff where the saddle-
point solutions for the ‘short’ and ‘long’ trajectories perform
a missed approach and their joint contributions is modelled
in terms of an Airy function [51, 53-55]. Both of these
issues become particularly relevant when we start driving
the processes not with simple one-dimensional monochro-
matic fields with dynamical symmetry, but instead with
more complicated fields composed of multiple components
of different polarisations, frequencies etc. With every ad-
ditional frequency component new saddle-point solutions
arise. These potentially constitute new relevant quantum
orbits, depending on the amplitude ratio and phase shifts
between the constituent fields [56].

In the following we briefly describe the established proce-
dures for the two considered processes of ATT and HHG and
allude to how our current understanding of saddle-point
methods is insufficient to describe state-of-the-art experi-
mental setups.



A. Direct photoelectrons from above-threshold ionisation in
the strong-field tunnelling regime

Electrons that tunnel through the barrier formed by the
combination of Coulomb potential and the strong laser
field’s vector potential A(f) can be observed at a detector as
direct photoelectrons. The spectrum of drift momenta p of
those electrons is typically expressed in terms of the photo-
electron ionisation amplitude, given in atomic units as

¥(p) =f P(p+A(r)e S gy )

where the phase function
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is the semi-classical action of the electron with the ionisa-
tion potential .#, [45]. The integration in Eq. (1) runs over
the past time, and essentially includes the interaction time
with the laser field that drives the process. The prefactor
P(k) incorporates any information about the ground state of
the atom and is assumed to depend smoothly on the canon-
ical momentum k. Saddle points ¢ of this semi-classical ac-
tion are defined by
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generally complex-valued for .#, > 0, and are interpreted as
the discrete ionisation times at which the electron escapes
the Coulomb barrier [45]. The ionisation amplitude Eq. (1)
can then be rewritten as
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where the square-root term with the second derivative of the
action comes in as we expand the exponential term around
the saddle points f; into a Gaussian shape and analytically
integrate those, which is known as the standard saddle-
point method [48, 49].

To determine the subset of relevant saddle points out of all
solutions to Eq. (3) we need to identify a connected steepest-
descent path that leads us in positive Re(t) direction, consis-
tent with the original integration domain from ¢ = —oo to co
in Eq. (1).

That is, we seek a steepest-descent path of values of The
magnitude of the integral is dictated by For that, we allow
our integration variable to take complex values, and plot the
value of Im(Sxti(#)) in this complex plane of ¢, as this dic-
tates the magnitude of the integral |e 1S9 = em(San (D),
Because of the Cauchy-Riemann relations for complex ana-
lytic functions, the paths of steepest descent of Im(Saty(£))
are then given by lines of constant Re(Sart (). A suit-
able integration path can therefore be found by plotting the
contour level lines Re(Sati(#)) = Re(Sari(ts)) for each saddle
point and then identifying a connected path.

For the simple monochromatic driving field E(¢) =
Epsin(wt) (shown in Fig.1(a)) with Iy = E; = 0.92 x

L See Sec. 1 A for the derivation.
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Figure 1. Bottom row: Contour plots of Im(Sar(#)) for the com-
plex ¢ plane for the two driving fields shown on top (panels (a) and
(b)) and drift momenta p = 0 and p = 1.2a.u. respectively. Steepest-
descent and steepest-ascent contour lines (black and grey lines, re-
spectively) are attached to saddle points Eq. (3) (black markers, la-
belled in (d) for convenience), with the resulting integration path
drawn as a heavy black line. The electric field in (b) is composed
of the two constituent fields of frequency w (red dashed) 2w (blue
dotted) with phase shift ¢ = 0.5 and amplitude ratio E2/E] = 0.15
acc. to Eq. (30).

10MW/cm? (Ep = 0.05a.u.), A = 1030nm (w = 0.044a.u.) this
is shown in Fig. 1(c), where we have used .#, = 15.8eV and
A(1) = [E(#)dt. In these contour plots of Im(Sary(#)) (hills
in yellow, valleys in dark grey) we find there are two sad-
dle points in the upper complex-half plane, at Re(wt) = 7/2
and = 37/2 around the maxima of the field. Both are part
of the connected steepest-descent integration path (heavy
black line) and hence relevant contributors to the summa-
tion of ionisation events Eq. (4). This confirm the intuitive
understanding of the process at these times the the distor-
tion of the Coulomb potential is most significant and it is
easiest for the electron to tunnel out.

In the case of a more complicated driving field, as shown
in Fig. 1(b), the situation requires a bit more attention. Tech-
nically, there are four saddle points, which — for convenience
— we have labelled A,B,C,D in panel (d). Drawing the re-
spective contour level lines for each saddle point shows that
a connected path in positive Re(#) direction can only be
formed with the lines passing through points A and D, but
not B and C. This lets us conclude that only A and D are con-
tributors to the summation Eq. (4), whereas B and C need to
be neglected.

While this approach of determining the relevance of spe-
cific saddle points seems intuitively promising, it is surpris-
ingly non-trivial to develop an algorithm that finds con-
nected steepest-descent contours in a robust and rigorous
fashion [57, 58]. Numerical instabilities are expected as soon
as singularities enter the region of interest (vis. hills and val-
leys that are far away from the real axis, yellow and dark grey
regions in Fig. 1 respectively) or when saddle points are in
close vicinity. Furthermore, this approach still leaves us un-
informed on how to solve the integral in the case of Stokes
transitions or coalescing saddles, because in those cases the
steepest-descent contours do not have a unique definition.

Ultimately, even though we could technically decide over
the relevance of saddle-points on a case-by-case basis by
examining the action landscapes, so far there is no robust
method to determine the steepest-descent integration path.
While the one-dimensional integration is at least heuristi-
cally understood, for the two-dimensional time integration
even the case-by-case procedure fails to provide a meaning-
ful strategy.



B. High-harmonic generation

The process of high-harmonic generation is typically un-
derstood in terms of the three-step model: The electron es-
capes the atomic Coulomb potential via strong-field tunnel
ionisation (step 1), then propagates in the continuum where
it is accelerated by the driving laser field (step 2) until it fi-
nally recombines with its parent ion. Upon recombination
a high-energy photon is emitted (step 3) whose frequency is
a integer multiple, a harmonic, of the fundamental driver’s
frequency w [1, 2, 59, 60]. The spectrum of the emitted radi-
ation typically covers a long range of frequencies (the HHG
plateau) followed by a sharp drop in intensity at the high-
harmonic cutoff. The theoretical description that supports
this understanding is the above-mentioned SFA [1]. Start-
ing from the time-dependent Schrédinger equation and in-
corporating this set of assumptions and approximations
(find detailed explanations in e.g. [46, 61]) ultimately yields
the so-called Lewenstein integral which describes the time-
dependent dipole moment created at the final photoemis-
sion step. Therein, the measured quantity in an experiment
is the spectral power, or rather, the spectral intensity for har-
monic frequency qo,

I(qw) = (qu)*|D(qw)|* (5)

which uses the Fourier transform of the Lewenstein inte-
gral and g € N. The dipole moment D(qw) is given as the
two-dimensional integral over ionisation and recombina-
tion times t; and t,:
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with the semi-classical action
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The scalar factor Y (k) denotes the transition dipole from the
ground state into the excited state, while d (k) is the recombi-
nation matrix element [46] for the kinematic momentum k.
The stationary momentum associated with a given electron
path between ¢ and t; is given by

1 b
Ps(ti,tr)=—t f A(n)dz (8)
4
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as a result of applying the saddle-point method to the inte-
gration over possible intermediate drift momenta p.

Similar to the aforementioned one-dimensional time-
integral for ATI, the exponentiated action Sypg (£, ;) makes
the integral Eq. (6) highly oscillatory. Analogously, the inte-
gral can be understood as a sum of contributions from sev-
eral quantum orbits, each associated with a stationary point
(s, tr,s) of the action Syyg. The integral 6 is therefore often
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Figure 2. Typical structure of the complex saddle point solutions
for HHG in the complex plane of ionisation and recombination
times. For the monochromatic driving field shown in (a) the so-
lutions across a range of harmonic orders (colour bar) follow lines
in the complex planes (b) and (c) and can be classified as ‘short’
(S) and 'long’ (L) trajectories. For the electric field shown in (d), a
two-colour field with ¢ = 0.75 and E»/E; = 0.44, as per Eq. (30),
the solutions still trace lines in the complex plane and form several
ionisation windows (labelled A,B,C,D)), but their structure is more
intricate, hindering a classification.

approximated by
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and are saddle points in the complex plane. Each of those
saddle points (#s, tr,s) represents a semi-classical electron
trajectory giving rise to the quantum orbit formalism [4, 62]

For a given harmonic order g there will be multiple so-
lutions to Eq. (10), such that the total harmonic response
typically consists of contributions from various interfering
quantum orbits. Inspecting the ionisation and recombina-
tion times for the different values of qw, i.e., throughout the
harmonic spectrum, traces ‘lines’ in the complex planes for
t; and ¢, respectively; see Fig.2(b) and (c) for the solutions
around one ionisation window of a monochromatic driving
field shown in panel (a). Those lines are often associated
with different types of trajectories, mainly classified by their
travel time Re(#;, s — £ 5) into ‘short’ and ‘long’ orbits, or asso-
ciated with various ionisation bursts within one cycle of the
driving field [51, 54, 63].

As in the case of ATI, not all mathematical solutions to
Eq. (10) are actually relevant quantum orbits. For example,
we typically only consider those solutions where the ionisa-
tion times have a positive imaginary part, Im(#,5) > 0. Fur-
thermore, for monochromatic driving fields, the short tra-
jectories have to be discarded after the high-harmonic cutoff
of the spectrum [54]. These heuristics, while often physically
motivated, lack a consistent theoretical foundation and fail
to generalise to arbitrary or time-varying laser fields. They
have been established without mathematical rigour and are
often based on the fact that including other solutions leads
to diverging integral values [50-52]. Moreover, the heuristics
rely on the classification of the solutions.

For a generic driving laser field the structure of ionisa-
tion and recombination times in the complex plane may be
much more complicated, as shown in Fig.2 panel (e) and
(f) for the electric driving field in panel (d). In this partic-
ular case, we may attribute solutions to separate ionisation
windows (here labelled A - D) but a classification scheme
for the individual solutions cannot easily be derived. Fur-
thermore, the classification scheme breaks down once we
consider smooth transitions of driving fields, for example a
scan through a phase delay between the two components
of a two-colour field [52]. In such cases, the saddle-point
structures may change qualitatively, including coalescences
and branch cuts, causing the existing heuristics to fail. As
a result, we are unable to determine relevant saddle points
and therewith the contributing quantum orbits. This under-
scores the need for a more robust and systematic approach
to applying saddle-point methods to the integral Eq. (6) for
the case of arbitrary driving fields. Without such an ap-
proach, our ability to interpret strong-field phenomena in
terms of quantum orbits remains fundamentally limited.
The following section introduces Picard-Lefschetz theory as
the rigorous framework to address these issues, in a generic
form.

III. Picard-Lefschetz theory

Integrals of the form

I= fei‘P(X)’h dx, an

(g()C[RN

such as Eq. (1) and (6), evaluated along a path %) in real
space with the real-valued phase function ¢(x) are highly
oscillatory and only conditionally convergent. This makes
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Figure 3. Fundamental idea of Picard-Lefschetz theory, shown
on the toy model function ¢(z) = z2: The integrand el? is highly
oscillatory when evaluated along the real axis (top left panel). The
continuation of z into the complex plane (bottom left panel) shows,
that the oscillations (along the light blue line) vanish if we evaluate
the integrand along a different contour (dark blue line). The con-
tour that localises the integrand by minimising the oscillations fol-
lows steepest-descent paths of Im(z2) (contour plot in the bottom
right panel) and is identified by deforming the original integration
domain according to the downwards flow (red arrows in the bottom
right panel) and leads across the saddle point at z = 0 + 0i, where
¢'(z) = 0. Often, the integrand along the new contour has Gaus-
sian shape (top right panel) and can be calculated analytically.

them notoriously difficult to evaluate numerically, espe-
cially in the semi-classical limit 77 — 0 (see Fig.3(a) for an
example). These types of path integrals appear across a
vast range of research areas and each research area has de-
veloped different methods to solve them. As such, Picard-
Lefschetz theory [7-9, 64] was applied in physics in the con-
text of Chern-Simons quantum field theory where it aids to
solve the QCD sign problem [10]. After that, it was used
in quantum cosmology to solve the conformal-factor prob-
lem [37, 65], developed into a numerical technique for lens-
ing problems in radio astronomy [40, 66, 67] and combined
with Hamiltonian Monte-Carlo techniques in an attempt to
solve the sign problem in lattice field theory [68-70]. Most
recently, it was used to develop a rigorous definition of the
real-time path integral [11] and efficiently evaluate real-time
path integrals in quantum mechanics [41, 71, 72]. We here
give a very brief overview of the main ideas, illustrated by a
one-dimensional example, before we lay out further details
on the mathematical background, the numerical implemen-
tations, and the application to caustics and catastrophe the-
ory, in the subsequent sections.

The fundamental insight of Picard-Lefschetz theory,
shown on a toy model function in Fig.3, is to apply
Cauchy’s integral theorem and deform the integration con-
tour € < RY into the complex space C" such that along this
new contour the integrand no longer oscillates, the integral
converges absolutely, and hence is easier (if not trivial) to
evaluate. Of course, the key question is: How do we find this
optimal integration contour?
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Figure 4. Flowing the integration contour (dark blue) acc. to the downwards flow Eq. (12) for the same scenario as in Fig. 1(d) for discre-
tised flow steps i to minimise the oscillations of the integrand. The integrand evaluated along the contour is shown in the top rows.

Assuming that ¢(z) is a locally analytic function® of z € C
we continuously (!) deform the integration domain towards
contours along which the amplitude of the integrand lel| =
eRel®) decreases as rapidly as possible. The direction of the
deformation is therefore given by the downwards flow

de__ (3

- 0z (12)

da

and the resulting integration domain - as a function of the
flow parameter A — is the contour

T (A) =1{z(A,20) |2(A = 0,29) = 29 € 6}, (13)

where the flow is initialised along the original integration
domain %. In the limit A — oco the deformation of the con-
tour 9 (1) converges to yield a set® of steepest-descent man-
ifolds I c CV, so-called Lefschetz “thimbles”:

T =1lmITN)=) n.J,. (14)
A—o0 3

Each thimble is attached to a critical point z, of the phase
function where ¢'(z,) = 0 (i.e., saddle points in the complex
space) as these are stationary solutions to the downwards
flow Eq. (12) [38].

Importantly, the deformed integration contour 9~ onlyin-
cludes a subset of all critical points. This subset is specified
by the intersection number n, € Z which counts whether
the steepest-ascent manifold attached to a critical point z;
intersects the original integration domain 6, c RV. That is,
when the thimble of the critical point z, is relevant to the in-
tegral, there exists a point on the original integration domain
such that the flow eventually reaches it in the limit A — oo.
Intuitively, because the downwards flow defines a contin-
uous, and hence “unambiguous”, contour transformation,
we can reverse this procedure. Relevant critical points are
therefore those which have the steepest-ascent manifold
connecting back to the original integration domain.

2 That is, it is meromorphic, i.e., locally complex differentiable, such that it
can be approximated by a Taylor series almost everywhere in the complex
space. A remark on notation: We are using z instead of x to highlight the
continuation into the complex space CVV.

3 We acknowledge that strictly speaking Eq. (14) should be a union rather
than a sum. However, for consistency with the literature and the summa-
tion over integral contributions in Eq. (15) we use a sum here as well.

Let us briefly show how this contour deformation works in
practice, using the example of the ionisation probability am-
plitude for strong-field tunnel ionisation, i.e., Eq. (1), which
is a 1D integration over time, see Sec. IIA. The phase term
of the integrand is i¢p(¢) /i = —iSaT1(?), and the original inte-
gration contour % is the real t axis.* The continuous defor-
mation of the integration contour according to the down-
wards flow Eq. (12) (where the gradient on the right-hand
side is now given by —%) is shown in Fig.4, from left
to right, for the parameter configuration as in Fig. 1(d). The
bottom row shows contour plots of Re(—iSar) = Im(Sarr)
with the integration contour drawn in dark blue and the in-
tegrand exp(—iSari(?)) evaluated along this contour is shown
in the panels above. While the integrand is highly oscil-
latory along the original, real-valued integration contour
(panel (a), iteration step i = 0), the very rapid oscillations
disappear as soon as the contour is deformed even only
slightly into the complex plane, i.e., after a few flow steps
((b), i = 10). The flow ultimately converges ((d), i = 70)
to the steepest-descent contours attached to saddle points
(black lines across the black markers), confirming the inte-
gration route shown in Fig. 1(d). Vice versa, the relevant sad-
dle points to Eq. (15) are those which have a steepest-ascent
contour connecting to the real axis and hence ns, = 1. As
Im(—iSary) is constant along the steepest-ascent contours, in
this one-dimensional case these are simply the level lines at
Im(—iSari(ts)). For the two saddle points with Im(wt;) = 1.25
(A and D from Fig. 1(d)) we find level lines connect almost
straight down to the real axis, whereas the steepest-ascent
contours of the other two saddles (B and C, both around
2.5 + 2.5i) ultimately lead up into direction of higher imag-
inary parts, i.e., towards the light yellow-shaded regions —
‘hills’ — of the contour plot, rendering n, = 0.

Upon the deformation of the contour according to the
downwards flow, the integral (11) can ultimately be ex-
pressed as a sum over contributions from the separate thim-
bles’:

4 Note the sign change!

5 In this paper, we focus on the constructive interference of the integrand
at the stationary points of exponent ¢. However, in general, the sum of
thimbles includes both steepest-descent manifolds associated with the
stationary points of the exponent and the stationary points of the expo-
nent restricted to the boundary of the original integration domain, i.e.
¢le,- These boundary thimbles are always relevant. However, the inte-
gral along the first set of thimbles typically dominates over the boundary
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The value of the integral is preserved at any intermediate
stage A of the downwards flow. Notably, the expressions
Eq. (11) and Eq. (15) are thus strict equalities and indepen-
dent of the dimension N, since all we have done so far is a
contour deformation. However, for a non-degenerate crit-
ical point and in the asymptotic limit # — 0 the integral
along the thimble can be approximated by a Gaussian (as
in Fig. 3(c)). This well-known approximation is the saddle-
point method, as explained in e.g. [48]:

- 2nh
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leading to the saddle-point approximation of the integral I,
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The saddle-point approximation inherits the relevance of
the saddle point z, through the intersection n,.

For the ionisation amplitude shown in Fig. 4 this implies
that if the main goal was (only) the efficient evaluation of the
full integral we could terminate the flow procedure at any in-
termediate flow step i and integrate along the obtained con-
tour. For the converged contour (panel (d)) the contribution
of each saddle point can be assumed Gaussian, such that the
total value of the integral can be approximated by a sum of
Gaussians around the two relevant ¢, as shown in Eq. (4).

With the reliable methods of evaluating an integral of
type (11) by using either the downwards flow of the integra-
tion contour or, alternatively, determining relevant saddle
points via the upwards flow, we can study the integral upon
changes of external parameters of the phase function ¢. In
the case of strong-field physics, where the phase function is
the semi-classical action of the electron in the continuum,
those external parameters might be specifics of the driving
laser field, for example a phase shift in a two-colour field
configuration, or - in the case of HHG - the energy of the
observed photon, i.e., the harmonic order.

Upon a continuous and smooth scan over such exter-
nal parameters the saddle points z, vary smoothly in the
complex z space, but may abruptly change their respec-
tive intersection number 7, at Stokes transitions. More-
over, saddle points might coalesce into higher-order critical
points, at which the conventional saddle-point approxima-
tion Eq. (16) breaks down because the second derivative ¢"
in the denominator vanishes. To resolve the resulting caus-
tics in the total integral we can use the downwards flow as it
is in itself agnostic of the nature of the critical points. Eval-
uated across a range of external parameters it gives an exact
representation of the integral regardless of possible ‘compli-
cations’ in the saddle-point landscape.

In the following sections we will describe aspects of
Picard-Lefschetz theory that are relevant to its application

thimbles. For a systematic investigation of the boundary points in Picard-
Lefschetz theory, we refer to [73].

in attosecond physics. After giving a more detailed de-
scription of the inner working of the deformation of the in-
tegration contour in Sec. III A, we will present two possi-
ble approaches (and their numerical methods) to simplify
the conditionally convergent highly-oscillatory integral in
Eq. (11): (@) “The downwards flow”: Transforming the in-
tegration contour according to Eq. (12) and evaluating the
integral along this new contour by numerical quadrature.
And (b) “The necklace algorithm”: Determining relevant
critical points of ¢(x) by checking if there exists a steepest-
ascent connection to the original integration domain and
then evaluating their integral on the thimble, or by their
Gaussian approximation. Equipped with those robust and
novel techniques to evaluate whole families of integrals, in
Sec. III C we will address the appearance of caustics in the
space of external parameters.

A. On the deformation of the integration contour

Given that the exponent of the integrand in Eq. (11) is
meromorphic it can be written as

ip(z)/h=h(z)+iH(z) (18)

where h controls the amplitude of the integrand as Iei‘/’l =eh,
while H controls the oscillations.® That is, to localise the in-
tegrand we are seeking a contour along which the value of /
decreases most rapidly and H is constant. As we analytically
continue i¢p(z) into the complex plane, it fulfils the Cauchy-
Riemann equations

oh _ oH oh  oH
ORe(z) dIm(z) dlm(z)  ORe(z)

(19)

Hence, contours of constant phase H are those along which
e vanishes (or increases) most rapidly, i.e., contours of
steepest descent (ascent). We can therefore find an opti-
mal integration contour by deforming the integration path
into the direction of decreasing h, using the downwards flow
Eq. (12) shown above’ and sketched in Fig. 5. Along the flow
the value of H remains constant as

dip  0ip 0z _ 0i¢p (_ ai(/))* __|aig)? 0)
0L 0z 0A 0z \ 0z) |oz
which means that indeed Im(%i—ff) = %il = 0, while h de-
creases most rapidly: Re(‘?—f) = % < 0. Flowing the entire

original integration domain %) into the complex plane con-
verges the contour to a set of several disconnected Lefschetz
thimbles Eq. (14). Each thimble is a N-dimensional mani-
fold embedded in CY (i.e., 2N real dimensions) and attached
to a critical points z;, as mentioned above and visualised in
Fig.5 for N =1 and N = 2 respectively. As H(z,) is constant
along each of the thimbles 9, c CV, in the expression for
the total integral Eq. (15) it acts as a weighing factor for each

6 We use the notation h = Re(¢) and H = Im(¢p) which is standard in the
context of Picard-Lefschetz theory.

7 Alternative names in other research areas are gradient, Morse or holo-
morphic flow .
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Figure 5. For (a) one- and (b) two-dimensional path integrals
the downwards flow (directions indicated by red arrows) transform
the original, real-valued integration domain (light blue) into the
complex domain, ultimately towards the steepest descent contours
(“thimbles”, grey) attached to the critical points (cross markers).

contribution while the integration only needs to be carried
out across e/@:
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In analogy to the downwards flow, the upwards flow is
given by

dzy,; _ +( 0i¢p ) 22)

dr 071

and shows the direction of steepest ascent of h, while pre-
serving H. The steepest ascent manifold of a saddle point
Z, is known as the dual thimble %, € CV8. The manifolds
9 and A intersect (and are locally orthogonal to each
other) only in exactly one point: the critical point z,, as it
a stationary solution to both upwards and downwards flow.
This is visualised in Fig. 6(a) where steepest-descent (blue)
and steepest-ascent (green) contours are locally orthogo-
nal lines, intersecting at the saddle point. In the traditional
treatment of saddle-point methods, the dual thimbles are
often ignored. However, following Picard-Lefschetz theory,
the dual thimble .£;; actually governs the relevance (mean-
ing the contribution to the integral Eq. (15)) of the thimble
9 through its intersections with the original integration do-
main %, € RY. Those intersections are counted by the inter-
section number

Ng ={(HXo,6p), No€Z, (23)
where the intersection operator (:,-) is rigorously defined
in relative homology. If the dual thimble %, attached to a
critical point z, intersects the original integration domain
(ng = +1), its thimble 9 is part of the converged integra-
tion contour J. If they don't intersect (n, = 0), the respec-
tive thimble has to be neglected.

B. Numerical methods for one- and two-dimensional integrals

The fact that the integration of a highly-oscillatory, con-
ditionally convergent integral can be localised into contri-
butions from a set of thimbles allows for a variety of com-
putational approaches, e.g. finding the thimbles by means
of Monte-Carlo sampling when N is large [70, 74, 75]. In

8 Also referred to as the “anti” or the “unstable” thimble [39, 74].
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Figure 6. For an analytical function zeros of the first derivative
constitute saddle points wts in the complex plane, visible in the
contour for —Im(Saty) shown in (b). Around the saddle point, level
lines of Im(SaT(w?)) = Im(SaTy(Wts)) (black) are locally orthogonal,
as shown in (a), and define directions of steepest descent (blue)
and steepest ascent (green) of Re(Sat1(w?)).

the following we describe the two methods that are well-
suited for the one- and two-dimensional integrals to de-
scribe strong-field ionisation and HHG, respectively. First,
the “downwards flow”, which yields a discretised contour
along which the integration can be carried out more effi-
ciently. And secondly, the “necklace algorithm”, which we
developed to determine the intersection number n, of a
given saddle point, irrespective of any ‘classification’ of sad-
dle points (as one would usually do in attosecond science).

1. The downwards flow method

The goal of the downwards flow method is to deform
the integration contour according to the downwards flow
Eq. (12). The numerical algorithm (and its description) are
based on J.E’s open-source implementation in C++, avail-
able at [76].

We will explain the algorithm for the case of a one-
dimensional integral first, which is shown in Fig.7(a). The
initial step is the discretisation of the (original) integration
domain. We discretise the real axis as a list of points, which
are connected to line segments. Then, we iteratively apply
the downwards flow to each of the points, moving it into the
complex plane using a first-order Euler method

oh\*
z"_’z_(sﬂow(_) (24)

0z
with the small parameter dqq,. Note that it is sufficient to
consider the gradient of h (rather than i¢)) as H remains
constant along the flow anyway (see Eq. (20)). We use an
adaptive grid in the sense that as soon as two neighbour-
ing points are further than a threshold distance /iesh apart,
we insert a new point in the middle (see on the right-hand
side in Fig.7(a)). Furthermore, points are turned ‘inactive’
(i.e., they are not moved any more) as soon as their % value
drops below a certain threshold, say hgresh, indicated as
grey regions and empty points in Fig. 7(a). This will eventu-
ally break up the integration contour (which was just the real
line) into disconnected parts, as e.g. in Fig.4(d). The defor-
mation of the integration contour converges to the Lefschetz
thimble as % vanishes on the thimble. To avoid ‘overshoot-
ing’ this zero-gradient contour of steepest descent, we nor-
malise the gradient as soon as its magnitude drops below a
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Figure 7. Sketch of the implementation schemes of the down-
wards flow procedure. (a) For a one-dimensional integration, the
contour is discretised as a set of connected points that are itera-
tively (iteration step i) flowed, possibly subdivided (newly inserted
point on the right-hand side) and discarded (empty circle on the
left-hand side). (b) The two-dimensional integration follows the
same procedure, but points are connected to triangles to form a
surface. For the subdivision each triangle is considered in its pro-
jected plane, vertices are subdivided and the set of old and newly
inserted points are connected to triangles by Delaunay triangula-
tion.

certain threshold. The algorithm is terminated after a fixed
number of flow steps i = imax, Wwhen the number of active
points remains constant and the shape of the contour does
not change for subsequent iteration steps.

In the case of a two-dimensional integral the algorithm
technically follows the same procedure. However, each
point now has two coordinates (each of them being a com-
plex number!) and the integration ‘contour’ is a surface, em-
bedded in four real dimensions. That is, rather than using
line segments we have discretised our integration domain
into triangles now. For the subdivision we use the routine
sketched in Fig. 7(b): Each triangle is considered in its plane.
Al

Lihresh
then meshing the original triangle using a Delaunay triangu-

lation? of all points.
Ultimately, for the evaluation of the integral we use a nu-
merical quadrature of the obtained meshed surface [77].

For edges exceeding /ihresh, We insert { J new points and

2. The necklace algorithm

Whether a given thimble 9, contributes to Eq. (15) or
not is dictated by the intersection number n, which counts
the intersections between the dual thimble %, (i.e., the
steepest-ascent manifold attached to a critical point) and
the original integration domain %,. As the value of H
is constant along the steepest-ascent manifold, for a one-
dimensional integral (N = 1) finding the thimble and dual
thimble attached to the critical point z; € C corresponds

9 Coincidentally, the eponymous Boris Delaunay is the father of Nikolai
Delone that gave the “D” in the Ammosov-Delone-Krainov (ADK) ion-
ization rates in strong-field physics.
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Figure 8. The necklace algorithm: Thimble and dual thimble
are surfaces embedded in 4D (illustrative 3D projection in panel
(b)), locally spanned by the eigenvectors ¢, of the Hessian at the
saddle point (panel (a)). The brim of the dual thimble — the neck-
lace—isinitialised as a circle using the steepest-ascent eigenvectors
(green), and then flowed upwards. (c) and (d) show projections of
example necklaces in the (Im(w ), Im(w)), where an intersection
with (0,0) implies an intersection with the real plane.

to finding the respective contour level lines where H(z) =
H(z4), drawn as heavy black lines in Fig. 6. This can easily be
done numerically with e.g., a marching squares algorithm.
The arrows on the level lines in the inset panel in Fig. 6 indi-
cate the direction of descending k. At the saddle point, these
directions of maximised gradient are given by the (orthogo-
nal) eigenvectors of the Hessian, one pointing in direction of
steepest ascent (green), and one points in direction of steep-
est descent (blue). To find the dual thimble we therefore
simply pick the contour level lines along which # increases
away from the saddle point in the steepest-ascent direction.
Locally, these lines coincide with the one of the eigenvectors
and its inverse (dotted green vectors) of the Hessian. That is,
if h is ascending along a level line away from z, and eventu-
ally connects to the real axis (the original integral domain),
then ns; = 1 and the critical point contributes to the integral.
For example, in Fig. 6 for the saddle points with a positive
imaginary part the steepest-ascent lines intersect the real
axis, whereas for those saddle points with a negative imag-
inary part they don’'t. This can also be concluded immedi-
ately from the fact that for saddles points with Im(z,) <0 we
have h(zs) > 0, such that there is no way ‘uphill’ from z, to
the real axis where I = Re(i¢p(Re(z))) = 0.

For the case of a two-dimensional integral, find-
ing the dual thimbles is more complicated. As men-
tioned above, they are now two-dimensional manifolds
(i.e., surfaces) embedded in the four-dimensional space
(Re(z1),Im(z1),Re(zz),Im(z,)). That means, tracing the con-
tour levels H(z) = H(z,) for a critical point z, will now yield
contour level surfaces embedded in 4D which is computa-
tionally more advanced.

Here we present a novel technique — which we call the
‘necklace algorithm’ — to determine the intersection num-
ber of a given saddle point for a two-dimensional inte-
gral, a problem which has so far remained open,'? and for
which tentative general solutions were only proposed very
recently [80]. The basic idea, shown in Fig. 8, is to initialise
the ‘tip’ of the dual thimble in the closest vicinity of the sad-
dle point, and then use the upwards flow for its further con-
struction ‘slice by slice’. We terminate the upwards flow as
soon as each point reaches h = 0, and then check for the

10 A similar approach has been used in [78, 79] to approximate the (steepest-
descent) thimbles.
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intersection with the original integration domain. As we
are only interested in this (potential) intersection, it is suf-
ficient to consider the ‘brim’ of the thimble, which — as it is
a discretised closed loop — we dub the necklace. This ap-
proach is guaranteed to identify all possible intersections
of the steepest-ascent manifold with the original integration
domain.

Let us briefly explain the procedure on the one-
dimensional example. In the vicinity of the saddle point
the direction of steepest descent and ascent can be found
by linearising the flow. That is, we calculate the second
derivatives w.r.t. to both real and imaginary part of the in-
tegration variable z and identify the 2 x 2 real-valued Hes-
sian matrix, the eigenvectors of which pointing in the direc-
tion of maximised gradient. The eigenvector correspond-
ing to the negative eigenvalue points in direction of decreas-
ing h away from the saddle point, drawn as a blue vector in
Fig. 6, whereas the eigenvector corresponding to the positive
eigenvalue increases h away from the saddle point (drawn in
green). To obtain the full steepest-ascent manifold (a line),
we flow the end point of the steepest-ascent eigenvector and
its inverse (drawn as a dashed vector in the opposite direc-
tion) until it eventually reaches i = 0.!! If either of the end
points of the line hits the real axis, the intersection number
ng counts +1.

Now, for the two-dimensional integral we follow the same
procedure. We assume that the upwards flow Eq. (22) in a
small region around the critical point z, is linear in h w.r.t.
each of the four real-valued dimensions. That is, we use z =
(Re(z1),Im(z;1),Re(z2),Im(z7)) and write

dza —( h )* (z* —z458%)
dX \0zq025) lu=zy P 0P
=Hap(2" —20,") (25)

where a, f =1...4, such that / is the real-valued, symmet-
ric 4 x 4 Hessian of h. The solutions to the respective eigen-
system

JOV =V (26)

yields four eigenvalues, coming in pairs, where ¢, = —¢; and
¢4 = —¢&3. Analogously, for the corresponding eigenvectors
we find v, = —iv; and v, = —iv3. Their linear combination
solves Eqg. (25) and hence, defines the directions of constant
H around the saddle point z,;. The two vectors ¥ with the
smaller eigenvalues point towards the steepest descent of £,
and the two vectors with larger eigenvalues point in the di-
rection of steepest ascent of h, and they are drawn as blue
and green vectors in Fig. 8(a) respectively. By re-writing the
eigenvectors into complex form ala v, = (04,1 +i0g,2, g3 +
iDq,4), and assuming ¢; and ¢3 to be the two positive eigen-
values, we can therefore define the directions of steepest as-
cent,

zA) -z, = alvlef”1 + a3V3e'53’1. 27

with arbitrary coefficients a; and as. We initialise the dual
thimble’s brim by constructing a vanishing cycle (viz. a

11 Eor the one-dimensional integral, of course, this was not necessary as we
simply pick the respective contour line.

“loop” of constant H) around the saddle point. For that we
use the two steepest-ascent vectors and draw the circle

z(y,A=0) =z +€(cosyvy +sinyvs) (28)

for y € [0,27) and a small value €, as shown in Fig. 8(a).

Once the necklace has been initialised, we discretise it
and apply the upwards flow Eq. (22) to each resulting bead of
this necklace, making use of the procedure described for the
downwards flow in one dimension, and sketched in Fig. 7(a).
With that we construct the dual thimble ‘slice by slice’ (or
rather ‘ring by ring’) until all beads reach i = 0.

Finally, it remains indeed to check whether the found
brim of the dual thimble intersects the original integration
domain %y. For that we look at the Im(z) projection of the
necklace and check if the line crosses the origin Im(z) =
(0,0). This is shown schematically in Fig. 8(c) and (d), where
in panel (c) we find the necklace intersects the real axis once,
making n, = 1, whereas in panel (d) there is no intersection.

For any given individual saddle point, the necklace algo-
rithm allows us to determine whether its thimble is a rel-
evant contributor to the integral Eq. (15). As the necklace
algorithm essentially traces contours of constant H value,
limitations naturally arise in cases where two neighbouring
critical points have similar H values. The upwards flow then
might accidentally ‘slip’ into (parts of) the dual thimble brim
of the other critical point. A decision about the relevance of
the individual critical points can then be made by identify-
ing the parameters for the Stokes transitions, as will be laid
out in the next section.

Once we determined which critical points constitute rel-
evant thimbles, finding their contribution to the integral is
straightforward. Either we apply the standard saddle-point
method and approximate the integral across the thimble to
be of Gaussian shape as shown in Eq. (16). Or, if we want an
exact representation of the integral, we find the thimble at-
tached to each critical point. For that, we initialise a small
vanishing cycle around the critical point in the directions
of steepest descent (i.e., using the eigenvectors with smaller
eigenvalues from Eq. (26)) and then construct the thimble
by applying the downwards flow to it ‘slice by slice’, analo-
gously to flowing the necklace to obtain the dual thimble.
The value of the integral can finally be found by evaluating
the integrand along the thimble using a standard quadrature
routine.

C. Evaluating integrals across ranges of external parameters —
Stokes transitions, caustics and catastrophes

Equipped with tools to solve integrals like Eq. (11) with ar-
bitrary phase functions ¢, we can study how they depend on
external parameters. Upon a continuous and smooth scan
over such external parameters, the saddle points z, vary
smoothly in the complex z space. Their intersection num-
ber ns;, however, may change abruptly at so-called Stokes
transitions, causing the total number of contributing sad-
dle points (or rather, thimbles) to change [51, 53, 54, 81, 82].
For this to happen there must be a topological change in the
course of the steepest-descent integration contour. This is
often caused by two (or more) critical points in close prox-
imity, as shown in Fig. 9 for an integration contour depend-
ing on the external parameter g. In the left-hand panel
where g < gs; the two critical points are both part of the con-
verged deformed integration contour 9 (heavy blue line)
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Figure 9. Topological change of steepest-descent contours
(black) and the resulting integration contour (heavy dark blue line)
around a Stokes transition (at g = gs;) between two saddle points
upon changing an external parameter g (left to right panel).

and contribute separately to the integral via their thimbles
Is1 and J42. In the centre panel, at g = gs;, their steepest-
descent contours coincide and the deformed contour con-
tains both critical points - this value of the external parame-
ter marks the Stokes transition. For a further increase of the
external parameter where g > gst, the steepest-descent con-
tours separate and 9 only contains one of the saddle points.

A necessary condition for the Stokes transition between
two critical points z, and z» is that H(zs1) = H(z42), such
that their steepest-descent contours may connect directly to
each other. In simple examples, e.g., when ¢(z) is a poly-
nomial with two external parameters, Stokes transitions can
be analytically solved for and yield lines in parameter space
[40, 83, 84]. For more complicated ¢(z), where there is no
closed form expression for z,, candidate Stokes transition
can be found numerically by identifying where in parame-
ter space pairs of critical points assume the same value of
H. Generally, for a phase function with K external ‘control’
parameters the Stokes transitions are (K — 1)-dimensional
manifolds in the K dimensional parameter space. They are
topological features of this parameter space, as any change
of number of relevant saddle points is indubitably linked to
a Stokes transition. Vice versa, Stokes transitions define re-
gions in parameter space with a certain number of contrib-
utors to the integral. Consequently, if they can be calculated
a priori it is unnecessary to calculate each critical point’s rel-
evance individually.

More generally, as we evaluate the total integral across
ranges of external parameters we find Stokes transitions
and caustics. The latter are the pronounced features that
arise whenever multiple saddle points are in close proxim-
ity and ultimately coalesce. Caustics can be observed in ev-
eryday life, e.g., the rippled bright features at the bottom
of a swimming pool or the cusp-like structure in a coffee
cup, as well as in more involved physical problems like real-
time path integrals, lensing (both optical and gravitational)
[37, 66], the formation of large-scale structures of our uni-
verse [85], and, of course, attosecond science [12-14, 17].
From a mathematical point of view, caustics are best anal-
ysed in terms of catastrophe theory. Assuming the phase
function ¢(z) is a (K + 2)-order polynomial with K external
‘control’ parameters dictates that there can be at most K + 1
saddle points coalescing to one higher-order critical point,
the catastrophe point. Evaluating the integral over a range
of external parameters that involves such a coalescence of
saddle points will yield characteristic patterns, depending
on the codimension K, known as canonical diffraction pat-
terns [86, 87;88, §36.3]. Correspondingly, the contribution
of a critical point in the vicinity of a coalescence cannot
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be taken as Gaussian, but has to be modelled using a uni-
form approximation that involves the canonical diffraction
integrals, which is a challenging task [89-92]. For example,
the diffraction pattern for the fold catastrophe (K = 1), for
which two saddle saddle points coalesce, is the Airy func-
tion. Hence the Airy function is used to model the HHG
spectrum (which can be interpreted as a scan over the con-
trol parameter harmonic order) around the cutoff at which
the saddle point solutions for short and long trajectories (al-
most) coalesce [53, 54].

The downwards flow procedure elegantly circumvents
these problems as it is agnostic to the critical points. With
that, it offers the unique capability to evaluate the integral
Eq. (11) exactly across parameters ranges and to naturally
resolve the appearing caustic structures.

Having laid out the ideas and resulting numerical meth-
ods of Picard-Lefschetz theory, we now turn back to attosec-
ond science and strong-field physics. In the following chap-
ter we apply the methods introduced above to the SFA in-
tegral for HHG, namely Eq. (6), and show how it allows us a
quantum-orbit based evaluation for scenarios with arbitrary
driving waveforms.

IV. HHG driven by two-colour laser fields

The harmonic response of an atom subjected to a strong
laser field can (within the SFA framework [1, 18]) be calcu-
lated in terms of the two-dimensional integral Eq. (6) over
ionisation and recombination times of the involved elec-
tronic wave packet, f and t;, respectively. This double in-
tegral is often rewritten in terms of contributions of sepa-
rate quantum orbits [6, 62], i.e. semi-classical electron paths
defined by a discrete ionisation and recombination time,
which allows for an intuitive understanding of the process
as the associated trajectories have different propertiesin e.g.
the spatial divergences in the far-field [26, 93]. The quan-
tum orbits are pairs (t;, t;) for which the semi-classical ac-
tion Syug (4, t;) is stationary, i.e., saddle points in the com-
plex plane defined by Eq. (10). Notably, there are typically far
more solutions to Eq. (10) than relevant quantum orbits to
the process. So far, the existing heuristics to decide whether
a given saddle point solution is a relevant quantum orbit rely
on a classification of the solutions and dynamic symmetries
of the driving field.

For generic driving fields, however, those heuristics fail. In
the following we demonstrate how the methods of Picard-
Lefschetz theory described in Sec. IIIB can be utilised to
compute the harmonic dipole integral Eq. (6). The cen-
tral insight is that the integral can be evaluated along a
different contour ¥ in the complex time planes and ulti-
mately expressed as a sum over contributions from separate
thimbles J5:

D(qw)z[ ...dtzf ...dt
6o GeC?

=iy nsfdtd(ps(ti,tr)+A(tr))
: T,eC?

Y (ps(ti, &) +A(5))

3/2
( 2n ) e*iSHHG(ti,tr) . (29)
i(tr — 1)
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Figure 10. Two projections of the HHG thimble for a
monochromatic driving field and g = 25: (a) Ionisation-time pro-
jection (Re(t),Im(t),Re(#)) and recombination-time projection
(Re(#y),Im(#;), Re(t;)). Saddle points are marked as dots.

Here, we notate t = (f;, f;) and the original integration do-
main is €y ={(t;, t;) eR?| t;, > t;}. Each thimble J% is at-
tached to a critical point (s, t;, ;) defined by Eq. (10), and
only contributes for non-vanishing intersection numbers
ns. The key difference to and striking advantage over Eq. (9)
is, that here we still have an equality, as we haven't made any
assumption on the shape of the integrand around the criti-
cal points.

Note that the presented integration methods “only” ad-
dress the two-dimensional temporal integration and there-
fore hold for any definition of prefactors, waveforms etc.
With that, the exponentiated phase factor is —iSypg, which
we consider in its dependency on ionisation and recombi-
nation times only, Syug = Suuc (4, &) as in Eq. (7).

As an example, within this manuscript we choose to con-
sider HHG driven by a collinear and co-polarised two-colour
field that consists of a fundamental laser field with fre-
quency w, superimposed with its second harmonic (fre-
quency 2w). A generic expression for the electric field then
reads

E(1) = E) cos(wt) + E> cos(2wt + ¢) (30)

with the field amplitudes E; and E and the phase delay ¢
between the two field components. For pulses longer than a
few cycles, it is a good approximation to restrict our consid-
erations to one cycle of the fundamental frequency, the pe-
riod T = 27 /w. These types of driving fields are ubiquitous in
attosecond science, in both experiment and theory. They al-
low to probe the inner workings of the process of strong-field
light-matter interaction itself, as well as to tailor the proper-
ties of the harmonic spectrum and/or the created attosec-
ond pulse [14, 22, 23, 25, 27, 31, 94].

The following results are obtained using ., = 15.8eV and
Ip = E3 = 0.92 x 10"W/cm? (Ep = 0.05a.u.), A = 1030nm
(w =0.044a.u.), and we use atomic units (a.u.) unless stated
otherwise.

A. Applying Picard-Lefschetz methods

1. Using the downwards flow to deform the integration contour
towards Lefschetz thimbles

In the previous chapter we showed that there exists a con-
tinuous deformation of the original integration domain into
a contour that minimises the integrand oscillations, which
then allows for a more efficient numerical evaluation of the
integrand along that new contour. We demonstrate how this
downward flow method is applied to the integration contour
of the HHG integral Eq. (6).

We restrict ionisation to one cycle, so 0 < Re(#) < T, and
recombination to happen after that, with travel times lim-
ited to one cycle as contributions from orbits with longer
travel times are lower. This original integration domain is
then deformed into the complex domain for both # and ¢,
i.e., into the four-dimensional space (Re(#), Im(#), Re(t),
Im(t;)). As described in Sec. III B, the deformation of the do-
main follows a simple first-order scheme for either variable,

dt; ds,
fi— ti+6ﬂ0wd_/{ and t— tr+5ﬂowd—/{, (31)
with a small factor 6. The direction for every flow step A is
dictated by the downwards flow Eq. (12), recast for the case
of HHG:'?

%__(OSHHG)* and %__(OSHHG)*
dr at dr ot,

(32)

This routine continuously deforms the (discretised) orig-
inal integration domain into a two-dimensional steepest-
descent surface embedded in 4D space and converges to the
Lefschetz thimbles.

The resulting thimbles for the simple case of a monochro-
matic driver E(¢t) = Epcos(wt) (shown in Fig. 1(a)) and har-
monic order g = 25 are shown in Fig. 10 in two projections,
as well as the saddle point solutions (black markers). In the
“jonisation projection” (Re(#),Im(#),Re(t;)) (top), we ob-
serve the deformation into four disconnected surfaces cor-
responding to the ionisation windows around each maxi-
mum of the electric field. In the “recombination projection”
(Re(t;),Im(t;),Re(t;)) (bottom), we identify four separate sur-
faces, corresponding to the expected two pairs of “short”
and “long” quantum orbits within each half cycle. Each sur-
face is the steepest descent manifold (thimble) of a relevant
saddle point. Saddle points that are not included in the sur-
face are irrelevant.

For comparison, and in order to aid the understanding of
the flow method, we show a range intermediate steps of the
continuous deformation for a more complicated situation in
Fig. 11. The driving field is the two-colour field as in Fig. 1(b),
and we show how the downwards flow deforms the integra-
tion domain towards the Lefschetz thimbles (increasing it-
eration steps from left to right) for harmonic order 25, using
the same projections described above. From the ionisation-
time projection (top row) we can make out separate ionisa-
tion windows, albeit not as distinct as in the monochromatic
case.

12 We have dropped the A indices for better readability.
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Figure 11. Several steps of the deformation of the integration domain towards the Lefschetz thimble, for HHG driven by the two-colour

field shown in Fig. 1(b), harmonic order g = 25.

Finally, the harmonic dipole Eq. (6) can be calculated with
a simple quadrature along these discretised Lefschetz thim-
bles. This can be done at any intermediate step of the defor-
mation (as the integral remains unchanged for just a change
of contour, see Eq. (15)). Note that this deformation of the
integration domain is not an efficient method for the detec-
tion of all relevant saddle points.

2. Using the necklace algorithm to determine relevant quantum
orbits

Saddle points of the action correspond to the quantum
orbits that interfere when creating the harmonic dipole re-
sponse. The properties of those several electron trajectories,
e.g. the spread of the wave packet and the recollision angle,
imprint on the dipole and therewith on the properties of the
emitted radiation [27, 28, 95-98]. Moreover, the contribu-
tions of the various quantum paths behave differently upon
propagation, and give rise to distinct patterns in the far-field
spectra measurement [99-102]. Phenomenologically, it is
therefore interesting to understand which quantum orbits
are at play for the creation of a certain dipole, i.e., to under-
stand which saddle points are relevant contributors to the
sum Eq. (29). A given saddle point is a relevant contributor
if and only if its attached steepest-ascent contour (the dual
thimble) connects back to the original integration domain.
We find this possible intersection by propagating the brim
of the dual thimble upwards until & = 0 and then checking
for an intersection of this brim with the real plane; this is the
“necklace” algorithm introduced in Sec. III B 2. The necklace
around the saddle point is initialised as a small circle in the
plane of the two eigenvectors corresponding to the largest
eigenvalues of the matrix

2

Hqp=7—="8 t + b, t3 + t4d 33
a.p 3ta015 HHG (11 + 121, 13 + 141) (33)

where «,f = 1,...,4, and where we have taken t =
(Re(t),Im(f),Re(t),Im(z)). Each bead of the (discretised)
necklace then flows upwards in £, following

G, (B g S ()

da ot dr at,

until & = 0 and Sy becomes real. If the converged neck-
lace intersects our original integration domain, the given
saddle point is relevant.

3. Comparison of the two methods: Harmonic spectra

The resulting values of the integrals, in the form of spec-
tral intensities Eq. (5) for a range of harmonic orders g, i.e.,
harmonic spectra, are shown in Fig. 12 for the monochro-
matic driving field (top panel) and the two-colour field (bot-
tom panel) as in Fig.2(a) and (b) respectively. We show the
Gaussian contribution from each saddle point in coloured
markers (for relevant saddle points; light grey for non-
contributing saddles). The coherent summation of rele-
vant saddles’ contribution is shown in black markers (sad-
dle point-method, SPM, Eq. (9)), which is compared to the
quadrature along the deformed integration contour (Picard-
Lefschetz flow, PLE Eq. (29)) in blue. For the monochromatic
driving field (in panel (a)) we recognise the familiar structure
of a typical HHG spectrum exhibiting quantum-path inter-
ference [99]. Throughout the spectrum there are two types
of relevant contributions: from short and long trajectories
(red and pink respectively), of which the former become
non-relevant at the high-harmonic cutoff at g, = 42. Note
small deviations between the two integration approaches
only occur around this Stokes transition where the two sad-
dle points are in close vicinity and their contribution should
not be modelled as Gaussian, but rather as an Airy-type in-
tegral [51, 53, 54].

For the complicated two-colour field (in panel (b)), the
harmonic spectrum exhibits a more interesting structure, as
we find more than only two types of trajectories. Through-
out the first plateau (harmonic orders 15 to 32) we observe
the expected interference structure from the two dominant
trajectories marked in red and pink. However, we can iden-
tify a more interesting feature of the spectrum that we can
now attribute to individual trajectories, and which is shown
enlarged in the inset. Around the first harmonic cutoff there
are two other trajectories (yellow and orange) which con-
tribute significantly to the integral and yield an overall spec-
tral enhancement. This enhancement stems from the ‘clus-
ter’ of saddle points shown in Fig. 2(e) panel D and signi-
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Figure 12. HHG spectrum for the two fields shown in Fig. 1, ((a)
for the monochromatic field in Fig. 1(a), (b) for the two-colour field
in Fig. 1(d)), calculated as a sum of Gaussian contributions from
relevant saddle points (SPM, black line), and as a quadrature of
the deformed integration domain (PLE blue line). Individual sad-
dle points’ contributions are shown as markers (coloured for con-
tributing saddles, grey for non-contributing saddles). The bottom
panel features an inset for the artificial discontinuity that arises for
the SPM when saddle points are in close vicinity.

fies the appearance of a caustic, which we address in more
detail in the following section. In that region of the spec-
trum, the SPM exhibits both an artificial discontinuity and
also the largest deviation from the PLF-based signal. Again,
this is expected, as for saddle points in close vicinity the inte-
grand along the steepest-descent contour does not resemble
a Gaussian. For a proper analytical treatment within saddle-
point based methods we would require a uniform approxi-
mation to smoothen out the discontinuities.

Within the PLF method the integrand is directly evaluated
along the thimble and agnostic of any saddle (or higher or-
der critical) points. As a result, the evaluated integral is nat-
urally smooth throughout the spectrum and eliminates the
need for a carefully constructed uniform approximation that
connects different regimes of relevant saddle points. To this
end, the PLF provides a unique tool that captures the exact
value of the integral while still allowing for a separation into
distinct contributions from the disconnected components
of the thimble, where each of them may be identified with
a specific electron trajectory.

B. Spectral caustics

With the rigorous methods of Picard-Lefschetz theory, we
can now study a phenomenon that has so far been inac-
cessible to semi-classical quantum orbit analysis: caustics.
Caustics are the bright features that appear whenever mul-
tiple classical solutions of a quantum-mechanical system
coincide, as for example the marbled pattern at the bot-
tom of a swimming pool caused by multiple (classical) rays

of sunlight that are bent by the curved water surface onto
the same position. In attosecond science, we find the same
effect for specific shapes of the driving laser field’s vector
potential which causes the semi-classical electron trajecto-
ries to recombine at the same time and produce observ-
able bright features in, for example, the HHG spectrum [12-
17, 103-105]. The most prominent example is the high-
order harmonic cutoff, for which the saddle point solutions
for short and long trajectories are very close (or even coa-
lesce), see Fig.12(a) [54], and which was first observed as
a divergence in the simpler, fully classical, ‘simple man’s’
model [18]. Mathematically, the appearance of caustics is
linked to catastrophe theory (see Sec. IIIC) which relates
the number of external parameters K to the number of co-
alescing saddle points (K + 1) and hence, types of caustic
structures and the degree of enhancement. In the context of
HHG, the first ‘external parameter’ is the harmonic order q.
Across a spectrum we can therefore observe features related
to a fold catastrophe (K = 1) at which two saddle points co-
alesce [54].

As we increase the number of control parameters, e.g.,
by adding a second driving field, we can observe higher-
order diffraction patterns (cf. [88, §36.3]). Such bright fea-
tures have been observed experimentally as intensity en-
hancements of specific harmonic orders in [12] and [14],
where they have been attributed to a swallowtail catastrophe
diffraction pattern and coinciding classical trajectories, re-
spectively. Both experiments have slightly different param-
eters, but topologically they constitute the same situation:
a HHG setup with a collinear two-colour driver comprised
of a fundamental field and a strong second harmonic com-
ponent. The caustics can then be found by scanning over
phase delays between the two constituent fields and mea-
suring the harmonic spectra. They are related to a swallow-
tail catastrophe point (K = 3), with the three ‘external’ con-
trol parameters being harmonic order, phase delay and rel-
ative intensity.

Here, we present the harmonic intensities for this setup
across a scan over various phase delays ¢ between the two
constituent fields, calculated using the PLF method. That is,
for every configuration of external parameters (¢, g) we de-
form the integration domain using the downwards-flow al-
gorithm to determine the Lefschetz thimbles and then eval-
uate the HHG dipole integral across the obtained thimble
surface. In Fig. 13 we show this parameter scan for the elec-
tric field Eq. (30) with the fixed relative intensity E»/E; = 0.44
that reveals a part of the caustic pattern expected for a swal-
lowtail catastrophe, and a significant enhancement around
g =30.and ¢ =0.59."3

Lefschetz thimbles for the parameters with highest inten-
sity are shown in Fig. 14. While we can't see striking differ-
ences in the ionisation-time projection (top panel), we find
a rather flat surface in the recombination-time projection
(bottom panel). Comparing this to Fig. 11 where several sad-
dle points’ contributions yield ‘steep’ and disconnected sur-
faces, this highlights the fact that around a swallowtail point
multiple saddle point coalesce to one higher-order critical
point for which the steepest-descent manifold covers a long
range of recombination times.

13 For comparison: in Fig. 2 in [12] the HHG yield was modelled as the re-
spective canonical diffraction integral to demonstrate the expected pat-
tern, and not actually calculated from the HHG integral.
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Figure 14. Thimble for the HHG swallowtail configuration

(E2/E1 =0.44,q = 30.,¢ = 0.59), the most intense point of Fig. 13,
in projections as in Fig. 11.

Most importantly, this demonstrates our capability to
evaluate the HHG dipole integral exactly, even around sce-
narios exhibiting caustic features. The specific setup show-
cased here is of particular interest as it reveals a significant
enhancement of the harmonic response. However, for HHG
driven by polychromatic fields it is not the only configura-
tion where caustics appear, as —loosely speaking — each new
frequency component of the driving field contributes new
saddle-point solutions that may or may not coalesce (and
hence produce caustics) in a specific parameter condition.
One such caustic feature originating from the (near) coales-
cence of three saddle points (a cusp catastrophe point) ap-
pears in the scenario presented in the following chapter and
is studied in more detail in Appendix A.

15
C. The colour switchover

The necklace method introduced in Sec. IIIB 2 allows to
determine relevant quantum orbits for any arbitrary driving
field and independent of a classification of saddle point so-
lutions. This now enables us to answer the broader question
of how quantum orbits develop throughout any (arbitrary!)
smooth change of parameters. As an example, here we ad-
dress the smooth change from a monochromatic driver, via a
two-colour field, to a monochromatic driver of second har-
monic frequency - a technique we term colour switchover
(see evolution of field shapes in the left column of Fig. 15),
introduced in [42].

It provides a framework to study two-colour driving
fields with arbitrary intensity ratio (and phase shifts) that
seamlessly connects perturbative setups (where the second
colour field intensity is in the order of a few percent) to fully
bichromatic setups (with two constituent fields of equal in-
tensity). This transition beyond the perturbative regime has
proven to bear interesting dynamics in an ionisation-only
context already [42, 106].

Here, we consider a colour switchover with constant pon-
deromotive energy Up,'* i.e. constant total energy of the
driving field. With that, the classical harmonic cutoff of the
spectrum given by glass = Fp +3.17Up remains constant
throughout the switchover. We restrict our discussion to
fields with zero phase delay (¢ = 0) between the two com-
ponents, such that the vector potential reads

A(t) = Ay cos(wt) + Ay cos(Rwt) (35)
where Aj; =cos(@)Ey/w and Ay =sin(0)Ey/(2w).

The electric field is hence given by

E(t) = E;sin(wt) + E> sin(2wt) (36)
where E; = Eygcos(@) and E, =2E,sin(0).

Here we have used the mixing angle 0 as a parameter to
tune the amplitude ratio of the two constituent fields as
E,/E; =2tan@. For 0 = 0° the field Eq. (36) corresponds to a
monochromatic field with frequency w, and for 8 = 90° to a
monochromatic field with frequency 2w. For all intermedi-
ate values of 8, Eq. (36) forms a two-colour field with varying
amplitude ratio.

On the left-hand column of Fig. 15 we show the total elec-
tric field E(¢) for the values 6 = 1°,13°,22°,67° and 88° (pan-
els a-e) where we marked Re(#; ) for contributing quantum
orbits. This demonstrates the key intrigue of the scheme: At
the initial stage of the switchover (6 = 1°) we have two (dis-
tinct and clearly separated) ionisation bursts within one cy-
cle of the fundamental T, just after the maxima of the field
at wt =m/2 and 37/2 (panel (a)). After the continuous tran-
sition to 8 = 88°, however, we have four ionisation bursts
in that same time frame, around wt = 0.6, 2.2, 3.8 and 5.3
(panel (e)).

Especially with the understanding that ionisation events
(and the associated recombination times, making them tra-
jectories) correspond to saddle points, and saddle points
are topologically stable features of analytic functions, this

14 The ponderomotive energy is the time-averaged quiver energy of the free
electron over one cycle of the driving field, Up = (E(t)) 1 = § (A12 + A22).
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Figure 15. The colour switchover scheme: Electric fields E() (in
a.u., left column) and respective HHG spectra I(qw) (in a.u., right
column). The contribution of the various trajectories are colour-
coded based on their ionisation times marked in the electric field.
The markers in (g) and (i) indicate the specific contributions corre-
sponding to the trajectories in Fig. 17.

‘jump’ in number of ionisation events raises a set of ques-
tions [42]: Where do the new ionisation events come from?
Which of the ‘old’ trajectories correspond to the ‘new’ ones?
When do the new trajectories start to become relevant for
the harmonic spectrum? Picard-Lefschetz theory allow us
to answer these questions.

1. Saddle-point dynamics in complex time

Tracking how the saddle points move in the complex
plane throughout the colour switchover reveals rather com-
plicated dynamics, which makes a consistent classification
of trajectories tedious and non-unique, but still possible.
For example, in the beginning of the switchover the saddle
points can be classified as “short” and “long” trajectories
as shown in Fig. 2(b) and (c). Upon the colour switchover
the two ‘branches’ may break up and reconnect with other
- newly emerging — solutions, such that saddle points that
would be classified as a short trajectories for the monochro-
matic o driving field transition smoothly (!) into being long
trajectories.

The new saddle point solutions mostly come in from high
imaginary ionisation times (note e.g. the range of Im(# )
in Fig. 2(e) panel for ionisation window B and C) and move
down towards the real axis until they are equally spread out.
Focussing on the ionisation times, we find that the typi-
cal structure around the first ionisation burst (around time
wt; = 1.9, structure as seen in Fig. 2(b)) is ‘ripped apart’ by

the newly incoming saddle points, which subsequently push
some solutions to earlier times and some solutions to later
times. During this process, trajectories frequently undergo
pairwise (avoided) crossings similar to the one observed
and extensively described for the high-harmonic cutoff in
[54]. As described therein, the full coalescence of two saddle
points to a fold catastrophe point (K = 1) renders the classi-
fication ambiguous and introduces branch cuts into the uni-
fied Riemann surface that solves the saddle-point equations.
For the performed colour switchover considered here there
are multiple instances of those full coalescences, we show
one of them in Fig. 17(d) below.

2. Harmonic spectra throughout the switchover

Let us now highlight a few curious features that impact
the observable harmonic spectrum. Therefore, in the right-
hand side of Fig. 15 we present the harmonic spectra with
their contributions from the individual saddle points for the
respective stages of the colour switchover. We coloured the
individual saddle points’ contributions according to their
ionisation window indicated on the left-hand side, and we
show the resulting total intensity (SPM, from Eq. (9)) in
black. The contributions of non-relevant saddle points are
shown in faint lines.

For the initial stage of the colour switchover, i.e., a purely
monochromatic field with frequency w, the HHG spectrum
looks like the one shown in Fig.12(a). The contributions
from short and long trajectories from within in half cycle in-
terfere with each other and due to the dynamical symme-
try of the driving field result in the cancellation of the odd-
order total intensities. A slight perturbation to the driving
field breaks this behaviour. In panels (a) and (f) of Fig. 15
we show the field and the resulting spectrum shortly after
the initial stage of the colour switchover (8 = 1°), i.e., a two-
colour driving field with a weak 2w component. We see that
the comb-like structure of Fig. 12(a) is broken. Moreover, the
contributions of short-long pairs from within each half cy-
cle start to separate, visible at e.g. the harmonic cutoff (here
around order 60).

When increasing the strength of the second colour field
(panels (g)-(j)), this spreading becomes more pronounced.
The newly incoming saddle point solutions ultimately cause
the harmonic cutoff in the spectrum to break up into two
visible cutoffs (around g =50 and g = 75 in (g)). For the later
stage of the colour switchover the newly emergent trajecto-
ries produce multiple cutoffs, in panel (j) at g = 32, 47 and
60. The former, however, do not impact the total shape of
the harmonic spectrum as they stem from higher-order re-
turn pairs of saddle points, i.e., trajectories with longer travel
times and hence weaker contribution [93].

Upon the full completion of the colour switchover we also
restore the expected suppression of odd harmonic orders (of
the 2w driver) due to the symmetry of the driving field.

3. Spectral enhancements at the cusp catastrophe

The quantum-orbit based consideration of the colour
switchover allows us to study the intriguing interplay of
more than two trajectories. For example, the colour
switchover presented here entails an avoided crossing of
three trajectories. Even if the chosen parameter scan does
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Figure 16. Electrical fields (panels (a) and (b)) and three ac-
cording semi-classical electron trajectories (panels (c) and (d)) for
three saddle points contributing to harmonic order g = 28. The re-
spective energy-time relations are shown in panel (e) and (f). The
three assimilating trajectories for 8 = 21° (Eo/ E7 = 0.78) on the left-
hand side cause the enhancement seen in the respective spectrum
Fig. 15(h). The temporal contour along which the integral Eq. (37)
is evaluated is shown in the inset of panel (d).

not include an exact coalesce'® it nevertheless results in an
enhanced signal for specific harmonic orders, depending
on the mixing angle. This can be seen in Fig. 15(h) around
q = 28, where we find three contributing saddle points con-
tributions in close vicinity (see the three purple lines) re-
sulting in a noticeable increase of the total spectral intensity
around this harmonic order. A more detailed analysis of this
cusp catastrophe point is shown in Appendix A.

In Fig. 16 we show the corresponding semi-classical elec-
tron trajectories for the respective three saddle points for
this situation, as well as for a subsequent field configuration
in the switchover, at 0 = 45°. The trajectories are described
by the displacement from the origin (the nucleus)

Irs
x(1) =f (ps+A(D) dr, (37
[

,S

where the temporal integration in Eq. (37) starts from ;€ C
and goes down to Ref; s, then all the way to Ret; ; where it
then terminates at f; ; € C, shown as an inset in Fig. 16. The
first leg of this contour can be interpreted as the trajectory
‘inside the tunnelling barrier’ and it will give an imaginary-

15 1n fact, the exact coalescence of multiple saddle points requires complex-
valued external parameters, as is explained in full detail for the case of the
coalescence of two saddle points at the high-harmonic cutoff in [54].
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valued displacement x(#). The second part of the time con-
tour then describes the classical path of the electron under
the influence of the driving laser field [46, 96].

Phenomenologically, this is the same situation as in the
swallowtail caustic described above. For most scenarios all
the various electron trajectories interfere destructively and
their contributions ‘counteract’ each other. In situations like
Fig.16(b), the depicted electron pathways lie so close to-
gether — while still being individually relevant contributions
— that they interfere constructively as they all contribute
with the same phase towards the total HHG dipole. This re-
sults in a significant enhancement compared to other con-
figurations. Technically, this is exactly the phenomenon that
can be used to optimise the spectral yield of a desired har-
monic order [14].

4. Individual quantum orbits throughout the switchover

Apart from looking at the shape of the total harmonic
response and how the several ionisation windows inter-
fere, the necklace algorithm gives us the unique capability
to follow individual quantum orbits throughout the colour
switchover. This has been inaccessible within the existing
understanding of saddle-point methods or their extension
to uniform approximations. In particular, tracking saddle
points allows to examine how the respective electron trajec-
tories and their relevance to the spectrum changes. In Fig. 17
we showcase four (‘types’ of) saddle points in detail, as rep-
resentative examples of common behaviours. In the left col-
umn we show whether the respective saddle point is relevant
(coloured) or not (grey), as it is tracked for the range of har-
monic orders and throughout the colour switchover. Hence,
the boundary of the coloured region of contributions are the
Stokes lines in parameter space, drawn as a black line. In
the second column we show the specific semi-classical elec-
tron trajectories as in Fig. 16(b), for a fixed mixing angle (in-
dicated with the rainbow-coloured horizontal line in the left
panel) and a range of harmonic orders denoted with the re-
spective colour. Similarly, the third column shows the tra-
jectories for a fixed harmonic order (indicated by the verti-
cal bar in the left panel) and across the colour switchover de-
noted with the colour gradient. For non-relevant trajectories
the lines are drawn faint where it does not lead to confusion.

The first row in Fig. 17 shows what is eventually the most
dominant short trajectory for the first ionisation window of
the 2w field. That is, from panel (a) we find that for 6 = 90°
this saddle point is relevant up to harmonic order g = 60,
which constitutes the cutoff of Fig. 15(j). Prior to that (for
0 < 90°), this saddle point contributes only contributes for
lower harmonic orders, or not at all. We find this behaviour
particularly interesting, as this saddle points only starts con-
tributing quite late in the colour switchover, but then in fact
plays a prominent role for the spectrum of the fully 2w driv-
ing field. The trajectories shown in the centre panel (for
all harmonic orders) correspond to the contribution marked
with a circle in the harmonic spectrum in Fig. 15(i).

In contrast to that, the trajectory showcased in the sec-
ond row contributes to (at least) the early plateau through-
out the full colour switchover. It is the first, and hence most
dominant, short trajectory starting from ionisation burst
four, marked in Fig.15@) with a star. This trajectory re-
mains one of the most dominant contributors to the spec-
trum throughout the colour switchover, so that its Stokes
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Figure 17. Tracking four different saddle points (rows) through-
out the colour switchover and harmonic orders. Left column:
showing whether the saddle point is relevant (coloured) or not
(grey). Centre column: Trajectories acc. to Eq. (37) for the indicated
6 value (horizontal line in the left panel), for all harmonic orders
(lines coloured respectively). Right column: Trajectories for the in-
dicated harmonic order (vertical line in the left panel), throughout
the colour switchover (i.e., all values of 8, colour shaded respec-
tively). Markers in (e), (f) and (g) attribute contributions to the
spectra in Fig. 15(j) and (g).

line marks a noticeable cutoff in the spectrum. The Stokes
line in the left panel explains the shift in the high-order
harmonic cutoff observed from orders g = 60 for = 0 to
75,82,78 and 60 for 13°,22°,67° and 88° as seen in Fig. 15(f-j)
respectively.

In the third row we show the first long trajectory of the
second ionisation burst of the 2w driver around wt; = 2.22,
marked in Fig.15(b) and (g) with a square. As a long tra-
jectory it is relevant for all harmonic orders and remains so
throughout the whole colour switchover.

The trajectory shown in the last row is involved in the
caustics mentioned to explain the enhancement around g =
28 in Fig. 15(h). Around the caustic there is a saddle-point
coalescence that introduces ambiguity in the classification
and shows up as a clear discontinuity in panel Fig.17(d).
For the beginning of the colour switchover this saddle point
was a higher order return. After this branch cut, however,
this trajectory eventually becomes the long trajectory of the
fourth ionisation burst of the 2w field.

To conclude, Fig. 17 demonstrates how the electron tra-
jectories change smoothly upon parameter scans, but their
relevance to the total spectrum may change abruptly. In
turn, tracking contributions from distinct quantum orbits
throughout a parameter scan allows us to attribute the ob-
servable features of the harmonic spectra to these specific
saddle-point dynamics.

V. Outlook

This paper introduces the ideas of Picard-Lefschetz the-
ory to attosecond science and strong-field physics. We pre-
sented two computational methods that utilise these con-
cepts: the continuous downwards flow of the integration
domain, and the (novel) necklace algorithm to determine
the relevance of given saddle points. Both of those methods
have the flow of the discretised integration domain (Eqgs. 12
and 22, or 32 and 34 in the context of HHG) as a central al-
gorithmic element. While these flows theoretically preserve
Im(¢(x)), their discretised numerical implementation as a
first-order Euler scheme can lead to numerical instabilities
and hence, limitations in the usage of the methods. This is-
sue becomes particularly important near Stokes transitions,
where a precise treatment of Im(¢(x)) is essential by defini-
tion. Looking forward, a more rigorous way to identify and
incorporate Stokes transitions can be developed.

We have applied our new methods to calculate the HHG
response across ranges of external parameters that con-
tain Stokes transitions and hence, show caustics. Gener-
ally, the study of caustics is inherently linked to the frame-
work of catastrophe theory. By identifying parameters that
cause the coalescence of saddle points once can hence clas-
sify the respective catastrophe. This allows us to compute
the expected enhancement of the signal at the catastrophe
point compared to the signal in its vicinity. The so-called
‘twinkling exponents’ [107] have been used to motivate the
enhancements within a harmonic spectrum [12, 14], but
the rigorous derivation for arbitrary parameter scans is still
missing in the context of attosecond experiments.

Furthermore, the identification of catastrophe points al-
lows to develop uniform approximations that smoothen the
integral contribution of several saddle points in its param-
eter vicinity. Realising these for specific parameters scans
would allow a fully saddle-point based analytical approach
without artificial discontinuities even in the case of coales-
cences of three or more saddle points.

Alternatively, however, the separate thimbles can be eval-
uated individually using a standard quadrature of the sur-
face elements. As shown by Eq. (29) this yields the exact in-
tegral for the HHG dipole in terms of distinct contributions,
irrespective of the saddle points (and their vicinity).

VI. Conclusion

The description of strong-field induced processes like
tunnel ionisation and the generation of high-order harmon-
ics (HHG) is often linked to the intuitive picture of inter-
fering semi-classical electron trajectories. Mathematically,
this corresponds to making the saddle-point approxima-
tion to the integrals that describe the atomic response in
the SFA formulation, such as the harmonic radiation dipole
Eq. (6). The spectral intensity of a given harmonic order is
expressed as a sum over contributions from discrete quan-
tum orbits, i.e. a sum of Gaussians centred around saddle
points. For a given laser field, however, there are far more
solutions to the saddle point equations (10) than quantum
orbits that contribute to the dynamics. Their selection has
so far been based on heuristics and empirical rules, which
fail for generic state-of-the-art lasers to drive the process.

In this paper, we presented Picard-Lefschetz theory as a



tool to rigorously and unambiguously evaluate the dipole
response in a quantum-orbit based fashion for any arbi-
trary driving laser waveforms. For that, we understand the
dipole response as a two-dimensional path integral over
ionisation and recombination times. Continuously deform-
ing the two-dimensional integration contour into the com-
plex plane allows to rewrite the integral as a sum of con-
tributions along so-called Lefschetz thimbles. These are
steepest-descent contours (surfaces) attached to the sad-
dle points. The continuos deformation of the contour to-
wards the thimble is dictated by the ‘downwards flow’ and
preserves the value of the integral, such that any interme-
diate flow step is an equal, and hence exact, representation
of the integral. Conversely, as an alternative approach, we
can identify contributing saddle points by checking whether
there is an ‘upwards flow’ (a steepest-ascent contour, the
dual thimble) that connects them back to the original inte-
gration domain - the plane of real ionisation and recombi-
nation times. For the case of a one-dimensional integral the
steepest-ascent contours are lines that connect back to the
real axes for relevant saddle points — a property that is com-
putationally straight-forward to inspect. For the case of a
two-dimensional integral the steepest-ascent contours are
surfaces (embedded in four-dimensional real space) which
cannot be readily determined. We therefore introduce a
novel procedure, the “necklace” algorithm, in which we only
flow the brim of the dual thimble and indubitably identify
all possible intersections with the real plane. This allows us
to systematically determine relevant saddle points to a two-
dimensional integral.

We apply these methods to strong-field phenomena that
have so far been inaccessible to semi-classical analysis. One
of them is the appearance of spectral caustics, where the
close proximity (or even the full coalescence) of multiple
saddle-point solutions (read: trajectories) causes a signifi-
cant enhancement in the observed signal. In these scenar-
ios, the correct analytical representation of the integral re-
quires uniform approximations that account for the non-
Gaussian shape around the saddle points. Evaluating the
integrand along the deformed contour however, is indepen-
dent of the nature of the critical points, and hence allows
us to evaluate the SFA integral exactly even in the vicinity of
saddle-point coalescences.

The versatility of the introduced Picard-Lefschetz meth-
ods allows us furthermore to address questions of a new
class of parameter scans: the colour switchover [42]. The
gradual replacement of a monochromatic driving field with
its second harmonic, via two-colour configurations of in-
creasing amplitude ratio, connects the perturbative second-
colour regime to fully bichromatic driving fields. Using
the necklace algorithm, we are able to identify the relevant
quantum orbits throughout the full range of different driv-
ing field configurations. For the perturbative case, we can
attribute the unfolding of the high-harmonic cutoff to the
dominant pairs of trajectories from the respective half cy-
cles. Increasing the relative strength of the second har-
monic eventually leads to newly emerging ionisation bursts
that produce topologically stable enhancements in the spec-
trum. These arise due to the unavoidable proximity to a
three-fold saddle point coalescence (a cusp catastrophe),
which is here demonstrated for the first time in the context
of attosecond science. Moreover, tracking individual sad-
dle point solutions throughout the colour switchover allows
to show how the electron trajectories react to the change of
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driving field.

Ultimately, we have shown the rigorous link between
the SFA integrals for both the ionisation amplitude (one-
dimensional time integral) and the HHG response (two-
dimensional), and its interpretation in terms of quantum
orbits, for arbitrary driving fields. This opens up the pos-
sibility to analyse semi-classical trajectories for generic pa-
rameter scans and more complex wave forms, e.g. three-
dimensionally structured light fields. Depending on the spe-
cific configuration, there might be other methods derived
from Picard-Lefschetz theory that simplify the identification
of relevant quantum orbits, or more generally, the evalua-
tion of the integral. More specifically, the relevance of quan-
tum orbits and the occurrence of Stokes phenomena may be
further illuminated by including higher-order corrections in
the saddle point approximation using the mathematical the-
ory of resurgence [108, 109]. Furthermore, we look forward
to seeing Picard-Lefschetz methods applied to other highly-
oscillatory integrals within attosecond science as well, in-
cluding high-order ATI, with its description of rescattered
electrons [50, 62, 63] dynamic interference in ionisation sta-
bilisation [110, 111], or attosecond streaking [112]. As the
theoretical framework is independent of the dimensional-
ity of the integral, it could be used to simplify the five-
dimensional integrals arising in calculating the response of
solid targets to strong laser field radiation [113].
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A. The cusp catastrophe point

As a topological feature of the colour switchover we iden-
tify a cusp catastrophe point causing observable enhance-
ments in the spectrum. For the exact coalescence of three
saddle points, however, we require external parameters to
assume complex values. The smaller those imaginary parts
are, the larger is the effect of the catastrophe point on the
observed quantity. For the given phase shift ¢ = 0 presented
in the main text of this paper we find the largest relative en-
hancement of this cusp point when 8 = 21°, see Fig. 18. The
saddle points for 8 = 21° (E»/E; = 0.78), ¢ = 0 and for a
range of g = 20 to 40 are shown in Fig. 19, indicating three
‘branches’ of solutions in close proximity. The exact coales-
cence for three solutions only happens in complex parame-
ter space, at 0 = (21.28 +0.03i)°, ¢ = 0 and g = 27.95 - 0.1i.
This cusp point is marked as a triangle in Fig. 19, sitting in
the centre of the three real-parameter saddle points.

In Fig.20 we show how the exact location of this cusp
point changes depending on the external parameters. The
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Figure 18. Zoom in on the spectrum of Fig. 15(h), highlighting
the three different contributions that cause the enhancement of
harmonic order 28 due to the nearby cusp catastrophe point.
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Figure 19. Saddle points in the complex plane for the spectrum
shown in Fig. 15(h), indicating a cusp catastrophe.

(Re(g),Re(0)) projection in panel (b) indicates how the spe-
cific harmonic order which is enhanced by the coalescence
changes as we perform the colour switchover. Panel (c) con-
firms that for colour switchovers with a different two-colour
phase delay ¢ there is still a cusp catastrophe point. How-

ever, the increased imaginary parts of the external param-
eters (indicated by the marker size) suggest that it plays a
subdominant role for the total spectrum.
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Figure 20. Projections of parameter combinations (8, ¢, q) for a
cusp catastrophe point at which three saddle points coalesce. For
the exact coalescence we assume 6 € C and g € C and denote the re-
spective imaginary parts as marker size in panels (b) and (c). In all
three panels the colour indicates the real part of the harmonic or-
der g. The cusp point reported in the main text and above is drawn
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[1] M. Lewenstein, Theory of high-harmonic generation by low-
frequency laser fields, Phys. Rev. A 49 no. 3, pp. 2117-2132
(1994).
L. Keldysh, Ionization in the field of a strong electromagnetic
wave, Sov. Phys. JETP 20 no. 5, p. 1307 (1965), [Zh. Eksp. Teor.
Fiz. 47 no. 5, p. 1945 (1965)].
[3] A.Perelomov, V. Popov, and M. Terent’ev, Ionization of atoms
in an alternating electric field: II, Sov. Phys. JETP 24 no. 1,
p- 207 (1967), [Zh. Eksp. Teor. Fiz., 51 no. 1, p. 309 (1967)].
[4] W. Becker, E Grasbon, R. Kopold, et al., Above-Threshold
Ionization: From Classical Features to Quantum Effects, in
Advances In Atomic, Molecular, and Optical Physics, Vol. 48,
edited by B. Bederson and H. Walther (Academic Press, 2002)
pp. 35-98.
R. Kopold, W. Becker, and M. Kleber, Quantum path anal-
ysis of high-order above-threshold ionization, Dedicated to
Marlan O. Scully on the occasion of his 60th birthday, Optics
Communications 179 no. 1, pp. 39-50 (2000).
[6] P Salieres, B. Carré, L. Le Déroff, et al., Feynman’s Path-
Integral Approach for Intense-Laser-Atom Interactions, Sci-
ence 292 no. 5518, pp. 902-905 (2001).
S. Lefschetz, L'Analysis Situs et La Géométrie Algébrique
(Gauthier-Villars et cie, 1924).
E. Picard and G. Simart, Théorie des fonctions algébriques de
deux variables indépendantes (Paris, Gauthier-Villars, 1897).
E Pham, Vanishing homologies and the n variables saddle-
point method, in Singularities, Part 2, 2 (American Mathe-
matical Soc., 1983) pp. 310-333.

[2

[5

[7

[8

[9

[10] E. Witten. Analytic Continuation Of Chern-Simons Theory.
arXiv:1001.2933 (2010).

[11] J. Feldbrugge and N. Turok, Existence of real time quantum
path integrals, Annals Phys. 454, p. 169315 (2023).

[12] O. Raz, O. Pedatzur, B. D. Bruner, and N. Dudovich, Spec-
tral caustics in attosecond science, Nat. Photonics 6 no. 3,
pp. 170-173 (2012).

[13] V. A. Birulia and V. V. Strelkov, Spectral caustic in two-color
high-order harmonic generation: Role of Coulomb effects,
Phys. Rev. A99 no. 4, p. 043413 (2019).

[14] A.-K.Raab, M. Redon, S. R. Abbing, et al., XUVyield optimiza-
tion of two-color high-order harmonic generation in gases,
Nanophotonics 10.1515/nanoph-2024-0579 (2025).

[15] E Dong, Q. Xia, and J. Liu, Caustic effects on high-order
harmonic generation in graphene, Phys. Rev. A 109 no. 4,
p. L041102 (2024).

[16] D.Facciala, S. Pabst, B. D. Bruner, et al., High-order harmonic
generation spectroscopy by recolliding electron caustics, J.
Phys. B: At. Mol. Opt. Phys. 51 no. 13, p. 134002 (2018).

[17] D. Facciala, S. Pabst, B. D. Bruner, et al., Probe of Multi-
electron Dynamics in Xenon by Caustics in High-Order Har-
monic Generation, Phys. Rev. Letters 117 no. 9, p. 093902
(2016).

[18] P. B. Corkum, Plasma perspective on strong field multipho-
ton ionization, Phys. Rev. Letters 71 no. 13, pp. 1994-1997
(1993).

[19] K. C. Kulander, K. J. Schafer, and J. L. Krause, Super-intense
laser-atom physics, NATO Advanced Science Institutes Series


https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
http://www.jetp.ras.ru/cgi-bin/e/index/r/47/5/p1945?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/r/47/5/p1945?a=list
http://www.jetp.ac.ras/cgi-bin/e/index/r/51/1/p309?a=list
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1016/S0030-4018(99)00521-0
https://doi.org/10.1016/S0030-4018(99)00521-0
https://doi.org/10.1126/science.108836
https://doi.org/10.1126/science.108836
https://arxiv.org/abs/1001.2933
https://doi.org/10.1016/j.aop.2023.169315
https://doi.org/10.1038/nphoton.2011.353
https://doi.org/10.1038/nphoton.2011.353
https://doi.org/10.1103/PhysRevA.99.043413
https://doi.org/10.1515/nanoph-2024-0579
https://doi.org/10.1103/PhysRevA.109.L041102
https://doi.org/10.1103/PhysRevA.109.L041102
https://doi.org/10.1088/1361-6455/aac351
https://doi.org/10.1088/1361-6455/aac351
https://doi.org/10.1103/PhysRevLett.117.093902
https://doi.org/10.1103/PhysRevLett.117.093902
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994

316 (1993).

C.Jin, G. Wang, H. Wei, et al., Waveforms for optimal sub-keV
high-order harmonics with synthesized two- or three-colour
laser fields, Nat. Commun. 5 no. 1, p. 4003 (2014).

G. Cirmi, R. E. Mainz, M. A. Silva-Toledo, et al., Optical Wave-
form Synthesis and Its Applications, Laser & Photonics Re-
views 17 no. 4, p. 2200588 (2023).

S. Mitra, S. Biswas, J. Schotz, et al., Suppression of individual
peaks in two-colour high harmonic generation, J. Phys. B: At.
Mol. Opt. Phys. 53 no. 13, p. 134004 (2020).

E. Mansten, J. M. Dahlstrém, P. Johnsson, et al., Spectral
shaping of attosecond pulses using two-colour laser fields,
New Journal of Physics 10 no. 8, p. 083041 (2008).

L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P.
Marangos, Ideal Waveform to Generate the Maximum Pos-
sible Electron Recollision Energy for Any Given Oscillation
Period, Phys. Rev. Letters 102 no. 6, p. 063003 (2009).

O. Kneller, D. Azoury, Y. Federman, et al., A look under the
tunnelling barrier via attosecond-gated interferometry, Nat.
Photonics 16 no. 4, pp. 304-310 (2022).

[26] X. He, J. M. Dahlstrom, R. Rakowski, et al., Interference ef-

fects in two-color high-order harmonic generation, Phys.
Rev. A82 no. 3, p. 033410 (2010).

D. Shafir, H. Soifer, B. D. Bruner, et al., Resolving the time
when an electron exits a tunnelling barrier, Nature 485
no. 7398, pp. 343-346 (2012).

N. Dudovich, O. Smirnova, J. Levesque, et al., Measuring and
controlling the birth of attosecond XUV pulses, Nat. Phys. 2
no. 11, pp. 781-786 (2006).

J. Zhao and M. Lein, Determination of Ionization and Tun-
neling Times in High-Order Harmonic Generation, Phys. Rev.
Letters 111 no. 4, p. 043901 (2013).

N. Eicke and M. Lein, Attoclock with counter-rotating bicir-
cular laser fields, Phys. Rev. A99 no. 3, p. 031402 (2019).

J. Mauritsson, J. M. Dahlstrém, E. Mansten, and T. Fordell,
Sub-cycle control of attosecond pulse generation using two-
colour laser fields, J. Phys. B: At. Mol. Opt. Phys. 42 no. 13,
p. 134003 (2009).

C. Ruiz, D. J. Hoffmann, R. Torres, et al., Control of the po-
larization of attosecond pulses using a two-color field, New
Journal of Physics 11 no. 11, p. 113045 (2009).

S. Roscam Abbing, E Campi, E S. Sajjadian, et al., Divergence
Control of High-Harmonic Generation, Phys. Rev. Applied 13
no. 5, p. 054029 (2020).

S. Haessler, T. Bal¢iunas, G. Fan, et al., Optimization of Quan-
tum Trajectories Driven by Strong-Field Waveforms, Phys.
Rev. X 4 no. 2, p. 021028 (2014).

D. Baykusheva and H. J. Woérner, Chiral Discrimination
through Bielliptical High-Harmonic Spectroscopy, Phys. Rev.
X 8no. 3, p. 031060 (2018).

D. Ayuso, O. Neufeld, A. E Ordonez, et al, Synthetic chiral
light for efficient control of chiral light-matter interaction,
Nat. Photonics 13 no. 12, pp. 866-871 (2019).

J. Feldbrugge, J.-L. Lehners, and N. Turok, Lorentzian quan-
tum cosmology, Phys. Rev. D 95 no. 10, p. 103508 (2017).

Y. Tanizaki and T. Koike, Real-time Feynman path integral
with Picard-Lefschetz theory and its applications to quan-
tum tunneling, Annals of Physics 351, pp. 250-274 (2014).

R. Bharathkumar and A. Joseph, Lefschetz thimbles and
quantum phases in zero-dimensional bosonic models, The
European Physical Journal C 80 no. 10, p. 923 (2020).

J. Feldbrugge, U.-L. Pen, and N. Turok, Oscillatory path in-
tegrals for radio astronomy, Annals of Physics 451, p. 169255
(2023).

J. Feldbrugge and J. Y. L. Jones, Efficient evaluation of real-
time path integrals, Phys. Rev. D111 no. 8, p. 083524 (2025).

[42] A. Weber, M. Khokhlova, and E. Pisanty, Quantum tunneling

without a barrier, Phys. Rev. A111 no. 4, p. 043103 (2025).

[43] A. Weber, Figure-maker notebooks and code for Picard- Lef-

schetz methods for ATI and HHG integrals, Zenodo, doi:

(44]

[45]

(46]

(47]

(48]

(49]

[50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

[62]

[63]

(64]

21

10.5281/zenodo.17298777 (2025).

A.-T. Le, H. Wei, C. Jin, and C. D. Lin, Strong-field approx-

imation and its extension for high-order harmonic genera-

tion with mid-infrared lasers, J. Phys. B: At. Mol. Opt. Phys. 49
no. 5, p. 053001 (2016).

S. V. Popruzhenko, Keldysh theory of strong field ionization:

History, applications, difficulties and perspectives, J. Phys. B:
At. Mol. Opt. Phys. 47 no. 20, p. 204001 (2014).

O. Smirnova and M. Ivanov. Multielectron High Harmonic
Generation: Simple man on a complex plane. arXiv:1304.

2413 (2013).

K. Amini, J. Biegert, E Calegari, et al., Symphony on strong
field approximation, Reports on Progress in Physics 82 no. 11,

p- 116001 (2019).

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of
Integrals (Ardent Media, 1975).

R. Wong, Asymptotic and Computational Analysis: Confer-
ence in Honor of Frank W.j. Olver’s 65th Birthday (CRC Press,
Boca Raton, 2020).

A. Ja8arevi¢, E. Hasovi¢, R. Kopold, et al., Application of the
saddle-point method to strong-laser-field ionization, Jour-
nal of Physics A: Mathematical and Theoretical 53 no. 12,

p. 125201 (2020).

D. B. Milosevi¢ and W. Becker, Role of long quantum orbits
in high-order harmonic generation, Phys. Rev. A 66 no. 6,

p. 063417 (2002).

C. Figueira de Morisson Faria, D. B. Milosevi¢, and G. G.
Paulus, Phase-dependent effects in bichromatic high-order
harmonic generation, Phys. Rev. A61 no. 6, p. 063415 (2000).

C. Figueira de Morisson Faria, H. Schomerus, and W. Becker,
High-order above-threshold ionization: The uniform ap-
proximation and the effect of the binding potential, Phys.
Rev. A66 no. 4, p. 043413 (2002).

E. Pisanty, M. E Ciappina, and M. Lewenstein, The imaginary
part of the high-harmonic cutoff, Journal of Physics: Photon-
ics2no. 3, p. 034013 (2020).

D. B. Milosevi¢, Application of the uniform approximation to
integrals occurring in ionization by a strong elliptically po-
larized laser field, Phys. Rev. A111 no. 5, p. 053105 (2025).

D. Habibovi¢ and D. B. Milosevi¢, Complete classification
and additional saddle-point solutions for high-order above-
threshold ionization induced by a strong laser field, Phys.
Rev. A111 no. 2, p. 023103 (2025).

A. Gibbs, D. P. Hewett, and D. Huybrechs, Numerical evalu-
ation of oscillatory integrals via automated steepest descent
contour deformation, Journal of Computational Physics 501,
p. 112787 (2024).

A. V. Shanin, A. I. Korolkov, and K. S. Kniazeva, Saddle
Point Method for Transient Processes in Waveguides, Jour-
nal of Theoretical and Computational Acoustics 30 no. 04,
p- 2150018 (2022).

E H. M. Faisal, Multiple absorption of laser photons by
atoms, Journal of Physics B: Atomic and Molecular Physics 6
no. 4, pp. L89-1.92 (1973).

H. R. Reiss, Effect of an intense electromagnetic field on a
weakly bound system, Phys. Rev. A 22 no. 5, pp. 1786-1813
(1980).

A. Nayak, M. Dumergue, S. Kiihn, et al., Saddle point ap-
proaches in strong field physics and generation of attosec-
ond pulses, Physics Reports 833, pp. 1-52 (2019).

D. B. Milos$evié, D. Bauer, and W. Becker, Quantum-orbit the-
ory of high-order atomic processes in intense laser fields, J.
Mod. Opt. 53 no. 1-2, pp. 125-134 (2006).

D. B. MiloSevi¢ and W. Becker, X-ray harmonic generation by
orthogonally polarized two-color fields: Spectral shape and
polarization, Phys. Rev. A100 no. 3, p. 031401 (2019).

V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Sin-
gularities of Differentiable Maps: Volume II Monodromy and
Asymptotic Integrals (Springer Science & Business Media,
2012).


https://doi.org/10.1038/ncomms5003
https://doi.org/10.1002/lpor.202200588
https://doi.org/10.1002/lpor.202200588
https://doi.org/10.1088/1361-6455/ab859c
https://doi.org/10.1088/1361-6455/ab859c
https://doi.org/10.1088/1367-2630/10/8/083041
https://doi.org/10.1103/PhysRevLett.102.063003
https://doi.org/10.1038/s41566-022-00955-7
https://doi.org/10.1038/s41566-022-00955-7
https://doi.org/10.1103/PhysRevA.82.033410
https://doi.org/10.1103/PhysRevA.82.033410
https://doi.org/10.1038/nature11025
https://doi.org/10.1038/nature11025
https://doi.org/10.1038/nphys434
https://doi.org/10.1038/nphys434
https://doi.org/10.1103/PhysRevLett.111.043901
https://doi.org/10.1103/PhysRevLett.111.043901
https://doi.org/10.1103/PhysRevA.99.031402
https://doi.org/10.1088/0953-4075/42/13/134003
https://doi.org/10.1088/0953-4075/42/13/134003
https://doi.org/10.1088/1367-2630/11/11/113045
https://doi.org/10.1088/1367-2630/11/11/113045
https://doi.org/10.1103/PhysRevApplied.13.054029
https://doi.org/10.1103/PhysRevApplied.13.054029
https://doi.org/10.1103/PhysRevX.4.021028
https://doi.org/10.1103/PhysRevX.4.021028
https://doi.org/10.1103/PhysRevX.8.031060
https://doi.org/10.1103/PhysRevX.8.031060
https://doi.org/10.1038/s41566-019-0531-2
https://doi.org/10.1103/PhysRevD.95.103508
https://doi.org/10.1016/j.aop.2014.09.003
https://doi.org/10.1140/epjc/s10052-020-08493-8
https://doi.org/10.1140/epjc/s10052-020-08493-8
https://doi.org/10.1016/j.aop.2023.169255
https://doi.org/10.1016/j.aop.2023.169255
https://doi.org/10.1103/PhysRevD.111.083524
https://doi.org/10.1103/PhysRevA.111.043103
https://doi.org/10.5281/zenodo.17298777
https://doi.org/10.5281/zenodo.17298777
https://doi.org/10.5281/zenodo.17298777
https://doi.org/10.5281/zenodo.17298777
https://doi.org/10.1088/0953-4075/49/5/053001
https://doi.org/10.1088/0953-4075/49/5/053001
https://doi.org/10.1088/0953-4075/47/20/204001
https://doi.org/10.1088/0953-4075/47/20/204001
https://arxiv.org/abs/1304.2413
https://arxiv.org/abs/1304.2413
https://doi.org/10.1088/1361-6633/ab2bb1
https://doi.org/10.1088/1361-6633/ab2bb1
https://doi.org/10.1201/9781003072584
https://doi.org/10.1201/9781003072584
https://doi.org/10.1088/1751-8121/ab749b
https://doi.org/10.1088/1751-8121/ab749b
https://doi.org/10.1088/1751-8121/ab749b
https://doi.org/10.1103/PhysRevA.66.063417
https://doi.org/10.1103/PhysRevA.66.063417
https://doi.org/10.1103/PhysRevA.61.063415
https://doi.org/10.1103/PhysRevA.66.043413
https://doi.org/10.1103/PhysRevA.66.043413
https://doi.org/10.1088/2515-7647/ab8f1e
https://doi.org/10.1088/2515-7647/ab8f1e
https://doi.org/10.1103/PhysRevA.111.053105
https://doi.org/10.1103/PhysRevA.111.023103
https://doi.org/10.1103/PhysRevA.111.023103
https://doi.org/10.1016/j.jcp.2024.112787
https://doi.org/10.1016/j.jcp.2024.112787
https://doi.org/10.1142/S2591728521500183
https://doi.org/10.1142/S2591728521500183
https://doi.org/10.1142/S2591728521500183
https://doi.org/10.1088/0022-3700/6/4/011
https://doi.org/10.1088/0022-3700/6/4/011
https://doi.org/10.1103/PhysRevA.22.1786
https://doi.org/10.1103/PhysRevA.22.1786
https://doi.org/10.1016/j.physrep.2019.10.002
https://doi.org/10.1080/09500340500186099
https://doi.org/10.1080/09500340500186099
https://doi.org/10.1103/PhysRevA.100.031401

22

[65]

(66]
[67]

[68]

(69]

(70]

[71]

(72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(801

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

J. Feldbrugge, J.-L. Lehners, and N. Turok, No smooth be-
ginning for spacetime, Phys. Rev. Lett. 119 no. 17, p. 171301
(2017).

J. Feldbrugge, Multiplane lensing in wave optics, Mon. Not.
Roy. Astron. Soc. 520 no. 2, pp. 2995-3006 (2023).

B. Bonga, J. Feldbrugge, and A. R. Metidieri, Wave optics for
rotating stars, Phys. Rev. D111 no. 6, 063061 (2025).

H. Fujii, D. Honda, M. Kato, et al., Hybrid Monte Carlo on
Lefschetz Thimbles — A study of the residual sign problem,
Journal of High Energy Physics 2013 no. 10, p. 147 (2013).

M. Cristoforetti, E D. Renzo, and L. Scorzato (Collaboration,
AuroraScience), High density QCD on a Lefschetz thimble?,
Phys. Rev. D86 no. 7, p. 074506 (2012).

M. Cristoforetti, E D. Renzo, A. Mukherjee, and L. Scorzato,
Monte Carlo simulations on the Lefschetz thimble: Taming
the sign problem, Phys. Rev. D 88 no. 5, p. 051501 (2013).

J. Feldbrugge and U.-L. Pen. The real-time Feynman path
integral for step potentials. arXiv:2508.17578 (2025).

J. Feldbrugge, D. L. Jow, and U.-L. Pen, Complex classical
paths in quantum reflections and tunneling, Phys. Rev. D111
no. 8, 085027 (2025).

E. Delabaere and C. J. Howls, Global asymptotics for multiple
integrals with boundaries, Duke Mathematical Journal 112
no. 2, pp. 251-291 (2002).

A. Alexandru, G. Basar, and P. Bedaque, Monte Carlo algo-
rithm for simulating fermions on Lefschetz thimbles, Phys.
Rev. D93 no. 1, p. 014504 (2016).

J. Nishimura and S. Shimasaki, Combining the complex
Langevin method and the generalized Lefschetz-thimble
method, Journal of High Energy Physics 2017 no. 6, p. 23
(2017).

J. L. Feldbrugge, U.-L. Pen, and N. Turok, Picard-Lefschetz
Path Integrals, GitHub, https://p-1lpi.github.io/
(2021).

G. E. Bartholomew, Numerical integration over the trian-
gle, Mathematical Tables and Other Aids to Computation ,
Pp. 295-298 (1959).

M. Han, Z. Huang, H. Liu, er al, Spinfoam on a Lef-
schetz thimble: Markov chain Monte Carlo computation of
a Lorentzian spinfoam propagator, Phys. Rev. D 103 no. 8,
p- 084026 (2021).

A. Alexandru, G. Basar, P. E Bedaque, and N. C. Warrington,
Complex paths around the sign problem, Reviews of Modern
Physics 94 no. 1, p. 015006 (2022).

Y. Shoji and K. Trailovi¢.  Stable Evaluation of Lefschetz
Thimble Intersection Numbers: Towards Real-Time Path In-
tegrals. arXiv:2510.06334 (2025).

S. K. Lando, Geometry of the stokes sets for families of func-
tions of one variable, Journal of Mathematical Sciences 83
no. 4, pp. 534-538 (1997).

L. E. Chipperfield, L. N. Gaier, P. L. Knight, et al., Conditions
for the reliable production of attosecond pulses using ultra-
short laser-generated high harmonics, J. Mod. Opt. 52 no. 2—
3, pp. 243-260 (2005).

E J. Wright, The Stokes set of the cusp diffraction catastrophe,
J. Phys. A: Math. Theor. 13 no. 9, pp. 2913-2928 (1980).

M. V. Berry and C. ]J. Howls, Stokes surfaces of diffraction
catastrophes with codimension three, Nonlinearity 3 no. 2,
pp. 281-291 (1990).

J. Feldbrugge, R. van de Weygaert, J. Hidding, and J. Feld-
brugge, Caustic Skeleton & Cosmic Web, Journal of Cosmol-
ogy and Astroparticle Physics 2018 no. 05, pp. 027-027 (2018).
T. Poston and 1. Stewart, Catastrophe Theory and Its Applica-
tions, first edition ed., Surveys and Reference Works in Math-
ematics No. 2 (Pitman Publishing Ltd., Bath, UK, 1978).

P. T. Saunders, An Introduction to Catastrophe Theory (Cam-
bridge University Press, 1980).

E W.J. Olver, D. W. Lozier, R. E Boisvert, and C. W. Clark, eds.,
NIST Handbook of Mathematical Functions (Cambridge Uni-
versity Press NIST, Cambridge, New York, 2010) available on-

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

line as the Digital Library of Mathematical Functions.

C. Chester, B. Friedman, and E Ursell, An extension of the
method of steepest descents, Mathematical Proceedings of
the Cambridge Philosophical Society 53 no. 3, pp. 599-611
(1957).

M. V. Berry, Uniform asymptotic smoothing of Stokes’s dis-
continuities, Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences 422 no. 1862, pp. 7-21
(1989).

H. Schomerus and M. Sieber, Bifurcations of periodic or-
bits and uniform approximations, J. Phys. A: Math. Theor. 30
no. 13, pp. 4537-4562 (1997).

J.J. Stamnes and B. Spjelkavik, Evaluation of the Field near a
Cusp of a Caustic, Optica Acta: International Journal of Op-
tics 30 no. 9, pp. 1331-1358 (1983).

L. E. Chipperfield, P. L. Knight, J. W. G. Tisch, and J. P Maran-
gos, Tracking individual electron trajectories in a high har-
monic spectrum, Optics Communications 264 no. 2, pp. 494—
501 (2006).

O. Pedatzur, G. Orenstein, V. Serbinenko, et al., Attosecond
tunnelling interferometry, Nat. Phys. 11 no. 10, pp. 815-819
(2015).

V. V. Strelkov, M. A. Khokhlova, A. A. Gonoskov, et al., High-
order harmonic generation by atoms in an elliptically polar-
ized laser field: Harmonic polarization properties and laser
threshold ellipticity, Phys. Rev. A86 no. 1, p. 013404 (2012).
E. Pisanty and A. Jiménez-Galén, Strong-field approximation
in a rotating frame: High-order harmonic emission from p
states in bicircular fields, Phys. Rev. A 96 no. 6, p. 063401
(2017).

E. Pisanty, D. D. Hickstein, B. R. Galloway, et al., High har-
monic interferometry of the lorentz force in strong mid-
infrared laser fields, New J. Phys. 20 no. 5, p. 053036 (2018).

J. Itatani, J. Levesque, D. Zeidler, et al., Tomographic imaging
of molecular orbitals, Nature 432, pp. 867-871 (2004).

A. Zair, M. Holler, A. Guandalini, et al., Quantum Path Inter-
ferences in High-Order Harmonic Generation, Phys. Rev. Let-
ters 100 no. 14, p. 143902 (2008).

D. J. Hoffmann, C. Hutchison, A. Zair, and J. P Marangos,
Control of temporal mapping and harmonic intensity mod-
ulation using two-color orthogonally polarized fields, Phys.
Rev. A89no. 2, p. 023423 (2014).

S. Roscam Abbing, E Campi, E S. Sajjadian, et al., Diver-
gence control of high-harmonic generation, Phys. Rev. Appl.
13 no. 5, p. 054029 (2020).

L. Brugnera, D. J. Hoffmann, T. Siegel, et al., Trajectory selec-
tion in high harmonic generation by controlling the phase
between orthogonal two-color fields, Phys. Rev. Lett. 107
no. 15, p. 153902 (2011).

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer,
Low-Energy Structures in Strong Field Ionization Revealed
by Quantum Orbits, Phys. Rev. Letters 105 no. 25, p. 253002
(2010).

A.J. Uzan, G. Orenstein, A. Jiménez-Galan, et al., Attosec-
ond spectral singularities in solid-state high-harmonic gen-
eration, Nat. Photonics 14 no. 3, pp. 183-187 (2020).

S. P. Goreslavskii and S. V. Popruzhenko, Tunneling limit in
the theory of photoelectron rescattering by the parent ion,
Journal of Experimental and Theoretical Physics 90 no. 5,
pp. 778-787 (2000).

T. Rook and C. Figueira De Morisson Faria, Exploring sym-
metries in photoelectron holography with two-color linearly
polarized fields, J. Phys. B: At. Mol. Opt. Phys. 55 no. 16,
p. 165601 (2022).

M. V. Berry, Focusing and twinkling: Critical exponents from
catastrophes in non-Gaussian random short waves, J. Phys.
A: Math. Theor. 10 no. 12, pp. 2061-2081 (1977).

M. V. Berry and C. J. Howls, Hyperasymptotics for Integrals
with Saddles, Proceedings of the Royal Society of London Se-
ries A434 no. 1892, pp. 657-675 (1991).


https://doi.org/10.1103/PhysRevLett.119.171301
https://doi.org/10.1103/PhysRevLett.119.171301
https://doi.org/10.1093/mnras/stad349
https://doi.org/10.1093/mnras/stad349
https://doi.org/10.1103/PhysRevD.111.063061
https://doi.org/10.1007/JHEP10(2013)147
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.88.051501
https://arxiv.org/abs/2508.17578
https://doi.org/10.1103/PhysRevD.111.085027
https://doi.org/10.1103/PhysRevD.111.085027
https://doi.org/10.1215/S0012-9074-02-11221-6
https://doi.org/10.1215/S0012-9074-02-11221-6
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1007/JHEP06(2017)023
https://doi.org/10.1007/JHEP06(2017)023
https://p-lpi.github.io/
https://doi.org/10.1090/S0025-5718-1959-0107976-5
https://doi.org/10.1090/S0025-5718-1959-0107976-5
https://doi.org/10.1103/PhysRevD.103.084026
https://doi.org/10.1103/PhysRevD.103.084026
https://doi.org/10.1103/RevModPhys.94.015006
https://doi.org/10.1103/RevModPhys.94.015006
https://arxiv.org/abs/2510.06334
https://doi.org/10.1007/BF02434983
https://doi.org/10.1007/BF02434983
https://doi.org/10.1080/0950034042000275379
https://doi.org/10.1080/0950034042000275379
https://doi.org/10.1088/0305-4470/13/9/018
https://doi.org/10.1088/0951-7715/3/2/003
https://doi.org/10.1088/0951-7715/3/2/003
https://doi.org/10.1088/1475-7516/2018/05/027
https://doi.org/10.1088/1475-7516/2018/05/027
http://dlmf.nist.gov/
https://doi.org/10.1017/S0305004100032655
https://doi.org/10.1017/S0305004100032655
https://doi.org/10.1017/S0305004100032655
https://doi.org/10.1098/rspa.1989.0018
https://doi.org/10.1098/rspa.1989.0018
https://doi.org/10.1098/rspa.1989.0018
https://doi.org/10.1088/0305-4470/30/13/010
https://doi.org/10.1088/0305-4470/30/13/010
https://doi.org/10.1080/713821363
https://doi.org/10.1080/713821363
https://doi.org/10.1016/j.optcom.2006.03.078
https://doi.org/10.1016/j.optcom.2006.03.078
https://doi.org/10.1038/nphys3436
https://doi.org/10.1038/nphys3436
https://doi.org/10.1103/PhysRevA.86.013404
https://doi.org/10.1103/PhysRevA.96.063401
https://doi.org/10.1103/PhysRevA.96.063401
https://doi.org/10.1088/1367-2630/aabb4d
https://doi.org/10.1038/nature03183
https://doi.org/10.1103/PhysRevLett.100.143902
https://doi.org/10.1103/PhysRevLett.100.143902
https://doi.org/10.1103/PhysRevA.89.023423
https://doi.org/10.1103/PhysRevA.89.023423
https://doi.org/10.1103/PhysRevApplied.13.054029
https://doi.org/10.1103/PhysRevApplied.13.054029
https://doi.org/10.1103/PhysRevLett.107.153902
https://doi.org/10.1103/PhysRevLett.107.153902
https://doi.org/10.1103/PhysRevLett.105.253002
https://doi.org/10.1103/PhysRevLett.105.253002
https://doi.org/10.1038/s41566-019-0574-4
https://doi.org/10.1134/1.559162
https://doi.org/10.1134/1.559162
https://doi.org/10.1088/1361-6455/ac7bbf
https://doi.org/10.1088/1361-6455/ac7bbf
https://doi.org/10.1088/0305-4470/10/12/015
https://doi.org/10.1088/0305-4470/10/12/015
https://doi.org/10.1098/rspa.1991.0119
https://doi.org/10.1098/rspa.1991.0119

23

[109] D. Dorigoni, An introduction to resurgence, trans-series and [112] J. Itatani, E Quéré, G. L. Yudin, et al., Attosecond streak cam-
alien calculus, Annals of Physics 409, 167914 (2019), E-print. era, Phys. Rev. Lett. 88 no. 17, p. 173903 (2002).

[110] P. V. Demekhin and L. S. Cederbaum, Dynamic interference [113] D.Moos, H. Jiir}, and D. Bauer, Intense-laser-driven electron
of photoelectrons produced by high-frequency laser pulses, dynamics and high-order harmonic generation in solids in-
Phys. Rev. Lett. 108 no. 25, p. 253001 (2012). cluding topological effects, Phys. Rev. A102 no. 5, p. 053112

[111] E Vismarra, M. Bertolino, E. Appi, et al., Dynamic interfer- (2020).

ence of chirped photoelectrons, Phys. Rev. Lett. 135 no. 3,
p. 033202 (2025).


https://doi.org/10.1016/j.aop.2019.167914
1411.3585
https://doi.org/10.1103/PhysRevLett.108.253001
https://doi.org/10.1103/73tl-w87y
https://doi.org/10.1103/73tl-w87y
https://doi.org/10.1103/PhysRevLett.88.173903
https://doi.org/10.1103/PhysRevA.102.053112
https://doi.org/10.1103/PhysRevA.102.053112

	A universal approach to saddle-point methods in attosecond science
	Abstract
	Introduction
	Quantum-orbit approaches in strong-field theory
	Direct photoelectrons from above-threshold ionisation in the strong-field tunnelling regime
	High-harmonic generation

	Picard-Lefschetz theory
	On the deformation of the integration contour
	Numerical methods for one- and two-dimensional integrals
	The downwards flow method
	The necklace algorithm

	Evaluating integrals across ranges of external parameters – Stokes transitions, caustics and catastrophes

	HHG driven by two-colour laser fields
	Applying Picard-Lefschetz methods
	Using the downwards flow to deform the integration contour towards Lefschetz thimbles 
	Using the necklace algorithm to determine relevant quantum orbits
	Comparison of the two methods: Harmonic spectra

	Spectral caustics
	The colour switchover
	Saddle-point dynamics in complex time
	Harmonic spectra throughout the switchover
	Spectral enhancements at the cusp catastrophe
	Individual quantum orbits throughout the switchover


	Outlook
	Conclusion
	Acknowledgements
	The cusp catastrophe point
	References


