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The fundamental polarization singularities of monochromatic light are normally associated with invariance under co-
ordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle θ

and its polarization by a multiple γθ of that angle. These symmetries are generated by mixed angular momenta of the
form Jγ = L + γS, and they generally induce Möbius-strip topologies, with the coordination parameter γ restricted to
integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations
for arbitrary rational γ, by exploiting the higher internal symmetry of ‘bicircular’ superpositions of counter-rotating
circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot,
which reflects the subgroup generated by the torus-knot angular momentum Jγ, and we characterize the resulting
optical polarization singularity using third-and higher-order field moment tensors, which we experimentally observe
using nonlinear polarization tomography.

T he past three decades have witnessed an explosion in
our abilities to control the behaviour of light, and in our
understanding of the possible structures and topolo-

gies of electromagnetic radiation [1–4]. Building on the ini-
tial discoveries of wavefront dislocations and phase singular-
ities [5], the field of singular optics now spans from optical
communication technology [6] through imaging [7], the me-
chanical manipulation of matter [8, 9] and XUV/x-ray appli-
cations [10], to a detailed understanding of the classical and
quantum natures of the angular momentum of light [11–13].

Some of the most fascinating structures discovered by this
programme are the topological features of light: recent work
has described, sometimes experimentally, light fields with in-
tricate knots in their field lines [14], optical vortices [15–17]
and C-lines [18], as well as fields with spirals [19], umbil-
ics [20, 21], ribbons [22] and Möbius strips [23–28] in their
polarization, all of which give rise to rich spin-orbit pho-
tonics when coupled with space-dependent birefringent ele-
ments [29–31]. These structures are often associated with the
invariance of the light field under coordinated rotations: that
is, symmetry operations that rotate the spatial dependence of
the fields by an angle θ and the fields’ polarization by a multi-
ple γθ of that angle, whichmeans that they are associated with
‘mixed’ angular momenta [32] of the form Lz+γSz , where Lz

and Sz are the orbital and spin angular momenta of light about
the symmetry axis; these are conserved separately within the
paraxial approximation [11, 13], and can be measured inde-
pendently [33, 34].

For monochromatic light, the rotation coordination param-
eter γ must be either an integer or a half-integer [20, 32], since

the only internal symmetry of a polarization ellipse is a rota-
tion by π over a half-period delay. However, general electro-
magnetic fields are not subject to this restriction: as a sim-
ple example, a three-fold rotational symmetry is possible by
combining a circularly-polarized field with a counter-rotating
second harmonic [35, 36], a configuration that forms a so-
called ‘bicircular’ [37] trefoil-shaped Lissajous figure. The
Lissajous singularities of bichromatic fields have been the ob-
ject of some study [38–41], but their rotational properties have
thus far largely gone unexplored.

In this work we use the higher internal symmetry of bicircu-
lar fields to construct and characterize beams of electromag-
netic radiation that are invariant under coordinated rotations,
as generated by Lz+γSz , for an arbitrary coordination param-
eter γ. Topologically, these beams’ polarization corresponds
to a torus knot, characterized by two indices: the order n of
internal symmetry of the polarization Lissajous figure, and
the number of internal-symmetry rotations produced by a spa-
tial traversal around the central singularity; for each internal
symmetry, the latter forms a topologically-protected winding
number of the electromagnetic field.

Moreover, we show how this winding number arises nat-
urally as the phase winding number of the multipolar com-
ponents of the third- and higher-order field tensor moments
〈EiEj · · · Ek〉, in analogy to the monochromatic polarization
ellipse’s appearance as the quadrupole component of the po-
larization matrix 〈EiEj〉. Finally, we experimentally demon-
strate these torus-knot beams and characterize their winding
number via nonlinear polarization tomography.
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Coordinated-rotation invariance
For monochromatic light, rotational invariance is normally
framed by requiring that the complex amplitude Ẽ(r) of the
electric field obey an eigenvalue equation of the form

Ĝ Ẽ(r) = g Ẽ(r), (1)

for some symmetry generator Ĝ. For polychromatic superpo-
sitions, however, there is no longer a single complex amplitude
to which an eigenvalue equation like (1) can be applied – and
indeed, if one looks for invariant states by applying the gen-
erator Ĝ = L̂z + γ Ŝz separately to each amplitude and asking
for joint eigenstates, one becomes (erroneously) restricted to
the conclusions of the monochromatic case.

To deal effectively with the rotational invariance of poly-
chromatic beams, then, it is crucial to realize that, even in the
monochromatic case, the real-valued physical field E(r, t) =
Re

[
Ẽ(r)e−iωt

]
is rarely an eigenstate of the symmetry gener-

ator. Instead, the rotational invariance of the physical force
fields describes an equivalence between the symmetry oper-
ation and a time translation: for coordinated rotations, this
reads

R(γα)E
(
R−1(α)r, t

)
= E(r, t + τα), (2)

where R(α) is a rotation matrix by angle α about the beam’s
symmetry axis, and τ is a constant with dimensions of time.

This invariance condition is fulfilled trivially by circularly-
polarized orbital-angular-momentum beams [11], which are
separately invariant under rotations of the image and the po-
larization. (Moreover, those rotations can be independently
implemented when restricted to a single axis, using half-wave
plates and Dove prisms, respectively [32].) Going beyond
that, one can also form solutions of (2) which are invariant
under the combined transformation but not under either of
the separate ingredients: this is the case, for instance, for the
‘lemon’ and ‘star’ umbilic ellipse points [20, 21], as well as
the flat Möbius bands produced by conical refraction [32].
These solutions require an integer or half-integer γ, since only
rotations by multiples of π will return a monochromatic po-
larization ellipse to itself, and the fields can generally be de-
composed as superpositions of circularly-polarized beams of
different orbital angular momentum.

To generalize these beams, we look to bichromatic combi-
nations with higher-order internal rotational symmetry in the
polarization, as provided by the bicircular combination [37]
shown in figure 1a: we superpose a right-handed circularly
polarized (RCP) beam at a fundamental frequency ω1 = ω
with its second harmonic at ω2 = 2ω on a left-circular polar-
ization (LCP). Thus, over one-third of a period of the funda-
mental, the former rotates counter-clockwise by 120°, while
the latter rotates clockwise by 240°, so the polarization com-
bination is rotated rigidly by 2π/3. More generally, combin-
ing counter-rotating beams at ω1 = pω and ω2 = qω, for p,q
coprime integers, will give a (p+q)-fold-symmetric Lissajous
figure, but we focus on the ω-2ω combination for simplicity.

Finally, to extend this symmetry to coordinated rotations,
we work as in the monochromatic case and give the two light
fields at frequencies ω1 and ω2 different orbital angular mo-
mentum quantum numbers m1 and m2, as exemplified in fig-
ure 1b: this causes the bicircular trefoil to take different orien-
tations at different azimuthal positions around the beam, and

a traversal by 2π around the axis produces a rotation by a frac-
tion

γ =
m2ω1 − m1ω2
ω1 + ω2

=
m2p − m1q

p + q
(3)

of a revolution. For the ω-2ω combination, with p = 1 and
q = 2, this can be any arbitrary integer multiple of 1/3; for
arbitrary commensurate frequencies ω1 and ω2, γ can be any
rational number. (Irrational γ, on the other hand, are possible
by using non-commensurate frequencies, though that requires
a quasi-periodic field of infinite duration.)

Moreover, once the invariance under coordinated rotations
has been formulated as in equation (2), one can then solve
for the most general field with that symmetry; we sketch the
proof in the Methods section. When this general solution is
restricted to only monochromatic contributions, one recovers
the γ ∈ 1

2Z constraint.

Beam topology
We have, then, beams with a trefoil polarization which rotates
smoothly whenmoving around the axis of propagation of light
in the plane perpendicular to this axis, coming back to the
same trefoil but with a nontrivial internal rotation, as shown in
the ‘Ferris-wheel’ diagram in figure 1b. For monochromatic
beams, this internal rotation induces a Möbius-strip topology
to the polarization [23, 32]. (This strip can also be lifted to
a fully three-dimensional one if required [25, 26], but we re-
strict our attention to the topological Möbius strip in two di-
mensions.) In our case, the induced topology is different, but
it can still be analysed as in the planar monochromatic case,
by following the tips of the trefoil over their orbit under the
transformation.

In this spirit, then, we unfold the beam’s polarization as
shown in figure 1c, with the beam’s trefoil polarization set
against the azimuthal coordinate θ, giving a corkscrew varia-
tion that terminates at a point, θ = 2π, identical to the initial
θ = 0. To complete the visualization, we twist this corkscrew
around to join these two equivalent points, as shown in fig-
ure 1d. Here the key information is in the path followed by
the tips of the trefoil, and the details of the path of the Lis-
sajous figure can be distilled away as in figure 1e to leave only
the trefoil-tip path.

In this view it becomes clear that there is only one such path,
which wraps around the figure three times before returning to
its initial position; that is, all three lobe tips can be connected
by the coordinated rotation. (However, this property disap-
pears if γ is an integer.) Moreover, in this view, it becomes
clear that the lobe-tip path is a curve embedded on the surface
of a torus, which immediately classes it as a torus knot [42],
and in the example shown, the curve is indeed knotted: within
this representation, it cannot be deformed smoothly to a sim-
ple unknotted loop.

Generally speaking, a pω-qω bicircular combination with
orbital angular momenta m1 and m2 on the two components
will similarly have the lobe tips confined to a torus surface,
and the resulting torus-knot path traced by the lobe tips can
be characterized by two winding numbers:

– the number n = p+q of times it passes any given fixed-θ
cross section of the torus, equal to the number of lobes
of the Lissajous figure, and
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Figure 1 | Coordinated-rotation invariance and torus-knot beam topology. (a) The superposition of a right-circularly polarized beam
(red) with its left-circularly polarized second harmonic (green) produces a trefoil-shaped polarization Lissajous figure (blue). The
orientation of this trefoil depends on the relative phase between the two components, which can be made to vary along the azimuthal
position θ by adding different orbital angular momenta m1 and m2 to the two components, shown in (b) for m1 = 0 and m2 = −2: the
field then has coordinated-rotation invariance of the form R(γα)E(θ − α, t) = E(θ, t + τα) with coordination parameter γ = −2/3 and
τ = 1/6ω, and the lobe marked with a dot does not return to itself after a 2π azimuthal traversal over θ. (c) To study this field’s topology,
we unfold the polarization and azimuthal dependence, and then (d) twist the resulting cylinder to reconnect the planes at θ = 0 and 2π.
(e) If we then retain only the paths of the tips of the trefoil lobes (coloured by hue on (c-e) for visual clarity only), we obtain a knotted
curve embedded on a torus, in this case the (−2, 3) torus knot. (f) This torus knot can be seen as the path of the lobes on the flat torus
[0, 2π)× [0, 2π) of the azimuthal and polarization angles θ and φ, but also as the coordinated rotations when seen as a subgroup of the
independent-rotations group SO(2) × SO(2). 3D-printable models of (d) and (e), pictured in Fig. S1, are available in the Supplementary
Material.

– the (signed) number m = m2p − m1q of times it crosses
the inner diameter of the torus;

the knot is then labelled as the (m,n) knot. If m and n admit
a common divisor d = gcd(m,n), then the lobe-tip path sep-
arates into d separate components, each of which crosses the
inner diameter m/d times; in that case, the components are
(m/d,n/d) torus knots pairwise linked with each other [43].
The torus-knot order (m,n), then, has the structure of a ratio-
nal number, and indeed it is in direct correspondence with the
rational coordination parameter γ = m/n.

This includes, in particular, the ellipse-point umbilics of the
monochromatic case, whose Möbius-strip topology [23, 32]
can be re-cast as the topology of the (m,2) torus knot, which
then admits an immediate generalization to other members of
the knot family when themonochromatic restriction is broken.
In this way, our characterization in terms of torus-knot topolo-
gies forms a clear generalization of the existing classifications
of the polarization singularities of monochromatic fields, and
it raises broader questions about how to fully classify the po-
larization singularities of polychromatic fields.

The torus-knot topology of the beam also has a natural alge-
braic interpretation, as the symmetry subgroup of transforma-

tions, generated by Jγ = L̂+γŜ, formed by the coordinated ro-
tations. In paraxial optics, where the propagation axis is fixed
and field polarizations can be rotated about that axis without
compromising the transversality of the wave, the symmetry
groups for polarization and spatial-dependence rotations de-
couple (or, in other words, Lz and Sz can be measured inde-
pendently [11, 13]). Each of these two-dimensional rotation
groups is a copy of SO(2) � U(1), the circle group, which
means that the full symmetry group of paraxial optics is a
product of circles, SO(2)×SO(2), so it forms a flat torus. The
coordinated rotations, for a given γ, form a one-dimensional
continuous closed subgroup of that torus, which winds (m,n)
times about the torus’s two dimensions: in other words, it is
precisely the same torus knot as the beam topology, as shown
in Fig. 1f. Because of this algebraic identification to the beam
topology, we refer to the subgroup generator Jγ as the torus-
knot angular momentum (TKAM).

Here it is worth noting that the presence of this additional
factor of SO(2), which allows the beam to store information
in its internal (polarization) degree of freedom, is what allows
our TKAM beams to be invariant under an angle-dependent
transformation that does not return to unity after a 2π rotation,
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Figure 2 | Possible topologies of torus-knot beams. As the orbital
angular momenta (m1,m2) of the ω and 2ω components is varied
(upper left of each panel), the beam topology ranges over all (m, 3)
torus knots, and the coordination parameter γ (upper right of each
panel) ranges over all multiples of 1/3. When m = m2p − m1q =
2m2 − m1 is divisible by three, and γ is an integer, the torus knot
separates into three (possibly linked), distinct rings, reflecting the
fact that at α = 2π the coordinated rotation returns the trefoil lobes
to their initial positions.

without incurring the discontinuities that afflict fractional-
OAM beams [2, 3, 44].

More generally, torus knots have appeared several times in
different optical contexts, and it is possible to form knots in
this class using optical vortices [15–17], C-lines [18] and field
lines [14], as explicit three-dimensional objects. Here, on the
other hand, the torus knot does not exist as a real-space three-
dimensional object; it is, instead, a characterization of the
beam’s topology as a paraxial, planar Lissajous-figure field,
generalizing the Möbius-strip topology of monochromatic el-
lipse points.

Orientation measures and their singularities
At its heart, the optical singularity at the beam axis of a
coordinated-rotation-invariant beam is a singularity in the ori-
entation of the polarization Lissajous figure, as exemplified in
Figs. 3e and 3f. As such, to fully characterize it, we need a nu-
merical measure of this orientation. The existing orientation
measures [36, 38, 39, 45] are based on the polarization matrix
〈EiEj〉 of the beam (with 〈 · 〉 denoting time-averaging), but
this matrix is inappropriate to the fields studied here because
it is invariant under 180° rotations, and it is therefore blind to
structures with three-fold or higher symmetries.

The naive extension of this approach is to change the time-
averaged product of two field components for three of them:
that is, the rank-three field tensor moment 〈EiEjEk〉. This
object is somewhat too large to analyse directly, at four inde-
pendent components, but since we are looking for its transfor-
mation properties under rotations, it is natural to decompose
it into the two representations it carries, ` = 3 and ` = 1, of

the planar rotation group SO(2). Thus, the orientation of the
bicircular Lissajous figure is best characterized through the
multipole components

T3,3 =
〈(

Ex(t) + iEy(t)
)3

〉
and (4a)

T1,3 =
〈(

Ex(t) + iEy(t)
) (

Ex(t)2 + Ey(t)2
)〉
, (4b)

with α3 =
1
3 arg(T3,3) (mod 120°), the phase of the hexapole

component, giving the trefoil orientation angle. Furthermore,
the count of how many times α3 loops about its range over a
spatial traversal around the beam axis provides a new topo-
logically-protected winding number in direct correspondence
with γ. Thus, the field tensors in (4), and particularly their
phase winding numbers, are stable against perturbations, and
they can be used to define hexapole and dipole orientations for
any arbitrary bichromatic Lissajous figure.

Here the presence of the dipole representation in (4b) is an
added bonus: it provides a separate winding number, and it
points to the presence of ‘true’ vector vortices (which cannot
split into a pair of ellipse points), with a singularity in the
dipole orientation angle α1 = arg(T1,3). This can be achieved,
for example, with co-rotating circularly-polarized fields at fre-
quencies ω and 2ω, which produces a cardioid-shaped Lis-
sajous figure with a clear directionality.

For both field tensors, the cubic nature of the polyno-
mial inside the time-average places strict restrictions on the
field combinations that can contribute. Thus, for a bichro-
matic superposition of the form E(t) =

∑
± Re

[
E1,±ê±e−iωt +

E2,±ê±e−2iωt
]
with ê± = 1√

2
(êx±iêy), the time average covers

several products of exponentials, but only the ones at zero to-
tal frequency are retained: that is, products of the form E2

1 E∗2 ,
or, more precisely,

T3,3 =
3
√

8

[
E 2

1,−E∗2,+ + E∗1,+
2 E2,−

]
(5)

for the hexapole tensor component, with the E2
1 E∗2 dependence

mirroring the nonlinear processes that must be used to phase-
lock the two components of the field, and which we use below
to measure the trefoil orientation.

On a more general setting, the definitions in (4) generalize
transparently to characterize pω-qω combinations via the `-
polar component of the field tensor of rank n = p + q,

T`,n =
〈(

Ex(t) + iEy(t)
)` (

Ex(t)2 + Ey(t)2
) n−`

2
〉
. (6)

This reproduces, via T2,2, the existing ellipse orientation
measures for the monochromatic case, and it extends to a
bi-infinite family of optical topological winding numbers –
which is relevant even in the ω-2ω case, where T2,4, T2,6 and
even T2,8 are required, on dimension-counting grounds, to
fully characterize the quadrupolar orientation of general Lis-
sajous figures. Similarly, if the polarization is taken out of the
paraxial regime, the SO(3) multipole components of the field
tensor are the natural arena to describe the shape of the fields
and its possible singularities.

Experimental observation
The generation of bicircular ω-2ω beams with coordinated-
rotation invariance is relatively simple, but their detection
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Figure 3 | Experimental configuration and results. (a) Basic scheme for nonlinear polarimetry, giving rise to (b) our experimental set-up
(see the Methods section for a detailed description and definitions of the acronyms). (c,d) Experimental measurement of T3,3(x, y) for
m2 = −1 and m2 = −2 on the 2ω arm, taken by Fourier-transforming the CCD images as a function of the polariser angles, with the
complex phase arg(T3,3(x, y)) represented as the colour (i.e. the hue, given in the colour-wheel inset of panel (c)), and the amplitude
|T3,3(x, y) | plotted as the saturation. (Similar results for other values of m2 are presented in Fig. S5.) (e,f) Theoretical prediction for
the field tensor moment T3,3(x, y) of a gaussian and a Laguerre-Gauss beam with m2 = −1 and m = −2, showing a clear match to the
corresponding measurements, overlaid with the Lissajous figures of the polarization at different points around the beam. At the center
of the beam the Lissajous figure is a circle, and it shifts to a triangle and then a trefoil as the probe point gets further from the axis –
but the orientation of the deformation away from circularity depends on the direction of departure from the axis.

poses additional challenges, since linear-optical polarimetry
is insensitive to the relative phase between the two chromatic
components (unless the entire beam is transformed by a phys-
ical coordinated rotation [33]), and therefore to the bicircu-
lar trefoil’s orientation. To measure this phase, then, we re-
quire a nonlinear polarization tomography, with a quadratic
second-harmonic-generation step that echoes the beam gener-
ation step and up-converts the phase of the fundamental so it
can be compared with the second harmonic’s.

For monochromatic fields, the orientation of the polariza-
tion ellipse is normally measured by inserting a linear po-
lariser and rotating its direction θ from 0 through 2π; the ori-
entation angle can then be extracted as the phase of the sec-
ond Fourier component of themeasured intensity I(θ), mirror-
ing its appearance as the argument of the second field tensor
T2,2 (itself a traceless re-expression of the polarization matrix
〈EiEj〉). Similarly, for bicircular trefoils, whose orientation is
encoded in T3,3, we look for a polarimeter that will encode the
bichromatic polarization as the 3θ component of the intensity
as the polarimeter is rotated.
In an idealized sense, this can be achieved by projecting

both colours’ polarizations on a linear polariser oriented at
angle θ, followed by a type 0 second-harmonic generation
step on the same axis, and a filter to block the fundamental,
as shown in Fig. 3a, which then feeds to an imaging system.
The interference between the initial and the detection-stage
2ω light then produces a 3θ component proportional to T3,3
– and, in addition, the first Fourier component is proportional

to T1,3. In practice, physical rotations of the quadratic crys-
tal make for challenging alignment, so we use an optically-
equivalent system sketched in Fig. 3b and described in the
Methods section. We present sample experimental data and
their Fourier transforms in Figs. S2, S3 and S4.

The measured Fourier components, shown in Figs. 3c and
3d, clearly exhibit a nonzero winding number, in agreement
with the theoretical predictions shown in Figs. 3e and 3f. This
maps directly into a nonzero winding number of the third
field moment tensor T3,3, and it acts as a smoking-gun sign of
coordinated-rotation invariance with a coordination parame-
ter γ outside the half-integral constraints of the monochro-
matic case.

Moreover, since it can access the relative phase between
the components, this nonlinear polarization-tomography pro-
cedure can be used to reconstruct the polarization state of ar-
bitrary bichromatic ω-2ω fields, including a full Lissajous re-
construction over the polarization singularity in our configu-
ration. (We present a partial such reconstruction in Fig. S6.)
Our approach is thus complementary to recent nonlinear-
polarimetry schemes [46], providing a powerful organizing
principle for those frameworks in the form of the multipolar
components of Eqs. (4-6), and it constitutes, to our knowl-
edge, the first nonlinear polarization tomography of a coherent
bichromatic beam combination.

Outlook
Our results provide a set of topologies that are achievable at
optical polarization singularities when the monochromatic re-
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striction is lifted: beams with well-defined torus-knot angular
momentum Jγ = L + γS, invariant under the coordinated ro-
tations generated by Jγ, are possible for any rational mixing
parameter γ = m/n, producing a polarization field with the
topology of a (m,n) torus knot. We also present the theoret-
ical and experimental toolset, via field moment tensors and
their presence in nonlinear polarization tomography, that can
be used to characterize these beams and their associated sin-
gularities and winding numbers.

These features can be used as building blocks for more
elaborate field topologies, from non-paraxial equivalents that
can exhibit polarization torus knots as explicit three-dimen-
sional objects as in the Möbius-band case [25, 26], to knots
of coordinated-rotation-invariant vortex cores, or the trefoils’
equivalent to streamlines; they can also be extended to evanes-
cent light and combinedwith complex light shaping of the lon-
gitudinal polarization component [47]. The association with
fractional values of an angular momentum also opens the door
to the simulation of anyonic behaviour [48, 49] by using light’s
spin-orbit interaction with matter [29–31] and Bose-Einstein
condensates [50], as well as imprinting the beam’s torus-knot
topology onto the state of an atomic condensate [51]. Sim-
ilarly, since symmetry generators are generally conserved in
nonlinear optics [37, 52, 53], the same is true for Jγ when the
beams driving the process, even in highly non-perturbative
interactions, are invariant under coordinated rotations, as we
show in a follow-up paper [54].

From a quantum electrodynamical perspective, the exis-
tence of polychromatic beams invariant under coordinated ro-
tations challenges the view [32] that invariant beams should
be defined strictly as eigenstates of the torus-knot angular mo-
mentum generator L̂ + γŜ: the direct analogue to (2) is a con-
dition of the form

e−iα(L̂z+γŜz )/~ |ψ〉 = e−iταĤ/~ |ψ〉, or equivalently
(L̂z + γŜz)|ψ〉 = τĤ |ψ〉,

(7)

in its infinitesimal version. Nontrivial solutions of (7) do ex-
ist, using different numbers of photons on each component,
and they have a clean relationship with the operator version
of (4). However, the extent to which they can be extended
to a complete basis of states requires further attention, as is
the degree to which the TKAM L̂z + γŜz can be considered a
‘true’ angular momentum operator [11, 32] when the mixing
parameter γ steps out of the half-integer domain.
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in 3D using resin-based stereolithography on a Formlabs Form 2
printer. 3D Prints: Xavier Menino (ICFO); Image Credits: © ICFO.

Methods
General solution to the invariance equation
In this section we show the general solution to the field invari-
ance property (2) under coordinated rotations,

R(γα)E
(
R−1(α)r, t

)
= E(r, t + τα), (2)

where the rotation matrix acts as

R(α)v = ©«
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

ª®¬ ©«
vx
vy
vz

ª®¬ , (8)

so its action as a passive transformation in cylindrical coordi-
nates is E(R(α)−1r, t) = E(r, θ −α, z, t). With that in hand, we
can turn the invariance property (2) into its local version by
differentiating with respect to α, which produces

−
∂Ex

∂θ
− γEy = τ

∂Ex

∂t
,

−
∂Ey

∂θ
+ γEx = τ

∂Ey

∂t
.

(9a)

(9b)

This is a pair of coupled partial differential equations, but
since the derivatives appear with the same sign in both, we can
reduce them to a single unified form by setting u = θ + t/τ
and v = θ − t/τ, so that they combine to a single complex
equation, (

−
∂

∂u
+

1
2

iγ
)
(Ex + iEy) = 0, (10)

where the conjugate coordinate v drops out, leading to the
simple solution

Ex + iEy = F(v)e
i
2γu (11a)

= F(θ − t/τ)e
1
2 iγ(θ+t/τ) (11b)

in terms of an arbitrary function F(v) = F(θ − t/τ).
The solution in (11), however, is not quite complete, be-

cause of the possible fractional exponent in e
1
2 iγ(θ+t/τ), in a

function that needs to be periodic in θ, and this needs to be
offset by setting F(v) = F̃(v)e−

1
2 iγv for a periodic F̃(v). This

then requires that the solution be of the form

Ex + iEy = F̃(θ − t/τ)eiγt/τ (12a)

=

∞∑
m=−∞

Fmeimθei
γ−m
τ t, (12b)

in terms of the Fourier coefficients of F̃(v). This completely
fixes the possible dependence ofE, as a superposition of a dis-
crete set of orbital angular momentum (OAM) modes eimθ at
prescribed frequencies

��γ−m
τ

��, with right- (resp. left-)handed
circular polarizations at negative (resp. positive) frequencies.

In particular, the general solution in (12) is enough to repro-
duce the restrictions of the monochromatic case, which only
allows for two terms m1 and m2 to contribute to the sum, at
positive and negative frequencies e−iωt and e+iωt , which then
requires that

γ − m1
τ

= ω = −
γ − m2
τ

, (13)

and therefore restricts the coordination parameter

γ =
m1 + m2

2
(14)

to integer or half-integer values, as found in previous work.
On the other hand, if the general solution (12) is required

to include right- and left-handed components with OAM m1
and m2 at frequencies ω1 and ω2, then γ and τ are required
to obey γ + m1 = ω1τ and γ − m2 = −ω2τ, resulting in the
arbitrary coordination parameter γ given in (3), together with
the delay constant τ = m1+m2

ω1+ω2
.

Nonlinear polarization tomography
In this section we present the core mechanism for nonlinear
polarization tomography of bichromatic ω-2ω combinations,
as schematized in Fig. 3a; we consider its effect on an arbi-
trary bichromatic combination, but we neglect the spatial de-
pendence for now. Thus, we consider an electric field of the
form

E(t) = Re
[
E1e−iωt + E2e−2iωt

]
, (15)

which then passes through
1. a linear polariser along û = cos(θ)êx + sin(θ)êy , which

transforms the field to

LPθE(t) = û Re
[
û · E1e−iωt + û · E2e−2iωt

]
; (16)

followed by
2. a nonlinear crystal that produces type 0 second-harmonic

generation along û, thereby adding a contribution

ESHG(t) = û Re
[
χ (û · E1)

2 e−2iωt
]

(17)

to the field, where χ is a combination of the crystal’s
quadratic susceptibility and the interaction length; and
finally

3. a filter that eliminates the fundamental before the inten-
sity is measured.
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Our core observable is therefore the measured intensity as
a function of the rotation angle θ, given by the time average

I(θ) =
〈
Re

[
χ (û · E1)

2 e−2iωt + û · E2e−2iωt
]2〉

=
1
2

[
(χ

(
û · E∗1

)2
+ û · E∗2)(χ (û · E1)

2 + û · E2)
]
. (18)

Writing the electric field in circular components as Ej =∑
± Ej ,±ê± with ê± = 1√

2
(êx ± iêy) and j = 1,2, as in the

main text, so that the components along û now read û · Ej =
1√
2

(
Ej ,+eiθ + Ej ,−e−iθ

)
, we can express the intensity as an ex-

plicit Fourier series of the form

I(θ) = I0 + I1(θ) + I2(θ) + I3(θ) + I4(θ). (19)

Here the even components, I0, I2(θ) and I4(θ), carry lim-
ited information, as they contain no cross terms between E1
and E2, and they are therefore insensitive to the coherence be-
tween the two components:

I0 =
1
8
χ2

(
|E1 |

4 + 2
��E1,−E1,+

��2) + 1
4
|E2 |

2 , (20a)

I2(θ) = Re
[(

1
2
χ2 |E1 |

2E∗1,−E1,+ +
1
2

E∗2,−E2,+

)
e2iθ

]
, (20b)

I4(θ) = Re
[
1
4
χ2E∗1,−

2E 2
1,+e4iθ

]
. (20c)

The odd components, I1(θ) and I3(θ), on the other hand, do
contain the necessary E1-E2 coherences: they are given by

I1(θ) =
χ
√

8
Re

[(
E∗1,+

(
E∗1 · E2 + E∗1,−E2,−

)
(20d)

+E1,−

(
E1 · E∗2 + E1,+E∗2,+

))∗
eiθ

]
I3(θ) =

χ
√

8
Re

[(
E 2

1,−E∗2,+ + E∗1,+
2 E2,−

)∗
e3iθ

]
(20e)

and, in fact, they are direct measures of the dipole and
hexapole components of the third field moment tensor, as de-
fined in (4), which are given in this context by

T3,3 =
3
√

8

[
E 2

1,−E∗2,+ + E∗1,+
2 E2,−

]
and (21a)

T1,3 =
1
√

8

[
E∗1,+

(
E∗1 · E2 + E∗1,−E2,−

)
(21b)

+ E1,−

(
E1 · E∗2 + E1,+E∗2,+

)]
.

The output of this polarization tomography, then, is the
set of Fourier coefficients over θ, J0 = I0 ≥ 0 and In =
2 Re(Jneinθ ) for |n| ≥ 1, so that the set {J0, J1, J2, J3, J4} com-
prises a total of nine real-valued parameters. On the other
hand, the inputs to that calculation, {E1,+,E1,−,E2,+,E2,−},
occupy the eight-dimensional spaceC4, and one of those eight
dimensions is lost to a partial degeneracy of the {Ej ,±} 7→

{Jn} mapping, which is not affected by a transformation of
the form (E1,E2) 7→ (eiϕE1, e2iϕE1). This means, in turn,
that the {J0, J1, J2, J3, J4} can only occupy, at most, a seven-
dimensional submanifold of their nine-dimensional ambient
space: in other words, the polarimetry data {Jn} contain, in
principle, enough information to reconstruct the electric field
amplitudes of both beams.

The mapping itself, {Ej ,±} 7→ {Jn} as per Eqs. (20), is a
complicated polynomial of third and fourth degree, in eight
variables, so it cannot easily be inverted directly. For simu-
lated data, it is straightforward to find a field-amplitude preim-
age {Ej ,±} via least-squares minimization on the {Jn}. For the
experimental data, however, which are subject to noise (prob-
ably from interferometric drift), this least-squares minimiza-
tion procedure finds multiple local minima, and these require
additional information to be discarded safely; moreover, the
presence of noise produces some amount of ‘leakage’ of sig-
nal between the two components. Nevertheless, our existing
data do permit a partial reconstruction of the field amplitudes
and therefore of the experimental Lissajous field (modulo the
assumption that χ = 1, absent a detailed measurement of
the detection-stage harmonic generation efficiency), and we
present one such partial reconstruction in Fig. S6; our im-
plementation of the reconstruction algorithm is available at
Ref. 55. Future work aims at improving this measurement.
Experimental implementation
We now describe our experimental implementation of the ab-
stract nonlinear polarimetry delineated above, embodied in
the Mach-Zehnder interferometer depicted in Fig. 3b.

We used as the pump source a Gaussian beam from a diode
laser amplified with an erbium-doped fibre amplifier (EDFA),
centred at 1550 nm with a power of 300 mW, a beam diameter
of 2.6 mm and vertical polarization, which is oriented using a
linear polarizer (LP). The pump beam was sent through a lens
L1 (we omit all lenses from Fig. 3b for clarity), with a focal
length of 15 cm, pumping a 10-mm-long periodically-poled
lithium niobate (PPLN) nonlinear crystal (NLC1) which was
placed at the focal distance of L1 to generate second harmonic
type 0 centred at 775 nm. A dichroic mirror (DM) was placed
after the NLC1, which transmits the light centred at 775 nm
from the second-harmonic generation and reflected the light
centred at 1550 nm from the pump, forming the two arms of
the Mach-Zehnder interferometer.

The beam with wavelength centred at 775 nm was propa-
gated trough the arm A1 and transmitted through the lens L2,
with focal length of f = 20 cm, forming a telescope with lens
L1 to magnify the beam by a factor of ∼ ×1.33.
In order to turn this beam into a high-quality higher-order

Laguerre-Gauss Beam (LGB) we used a Spatial Light Mod-
ulator (SLM, Hamamatsu X10468-2, 792 × 600 pixels with
pixel pitch of 20 µm) so as to modulate phase of the incom-
ing beam by phase patterns for LGB displayed on the SLM. A
half-wave plate HWP (not shown) was used to change the po-
larization orientation of the beam to horizontal, as required by
the SLM, and another HWP (not shown) was used return the
reflected beam to vertical polarization. The output beam is a
high-quality LGB with vertical polarization, with a topologi-
cal charge m2 controlled by the phase winding on the SLM.
Following the dichroic mirror DM, the beam centred at

1550 nm was reflected and propagated along the arm A2.
First it was transmitted through a lens L3 with focal length
of f = 15 cm which forms a telescope with the lens L1 with
magnification ×1 to collimate the beam.
In order to obtain counter-rotating circular polarizations on

both beams, a quarter-wave plate was placed in each arm, so
that along the arm A1 and just after the SLM our LGB was
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Figure S2 | Observed interference patterns. Representative
interference patterns observed with m2 = −2 for various values of
the polariser angle θ.

Figure S3 | Transformed experimental results. Fourier trans-
form of the experimental results of Fig. S2, shown in both magni-
tude (right-hand panels) and phase (left-hand panels; arg( f̃̀ (x, y))
as the hue and | f̃̀ (x, y) | as the saturation). We normalize | f̃̀ (x, y) |
to its maximum value within each plot, but we show its scale with
respect to the base ` = 0 intensity | f̃0(x, y) | on the density-plot tick
marks. Thus, the only meaningful channel with ` > 0 is ` = 3, with
a dominant signal and a clear phase winding.

transmitted through the quarter-wave plate QWP1 oriented at
45°, also along the arm A2 and just after the DM the beam
with wavelength centred at 1550 nm was transmitted through
the quarter-wave plate QWP2 oriented at −45°.
For the detection stage, both beams are transmitted through

a linear polariser LP1 and LP2, for each arm A1 and A2 re-
spectively, to project the polarization state at angle θ. We keep
the detection nonlinear crystal (NLC2, 10-mm-long PPLN)
stationary, to ensure stable phase-matching, rotating the polar-
ization after LP1 and LP2 into its phase-matching angle using
half-wave plates HWP1 and HWP2 at angles θ/2. The NLC2
crystal was placed in the armA2 between the lenses L4 and L5,
with focal lengths of f = 15 cm and f = 30 cm respectively,
so as to magnify the beam by a factor of ∼×2. Pump light was
eliminated using a bandpass filter (F) centred at 775 nm with
a bandwidth of 10 nm. The two beams were recombined by a
beamsplitter and their interference pattern was observed with
a CCD camera (resolution of 1200 × 1600 pixels, pixel width

Figure S4 | Transformed experimental results. Analysis of the
results, as in Fig. S3, for co-rotating circular polarizations on both
arms of the interferometer, with m2 = −2. Here the dominant com-
ponent shifts from ` = 3 to ` = 1, showing a nonzero phase wind-
ing on T1,3, and with that a ‘true’ vector vortex.

Figure S5 | Observed phase vortices. Experimentally-obser-
ved phase vortices, in T3,3 plotted as in Figs. 3, S3 and S4, for
different values of the second harmonic’s OAM m2, as well as for
the co-rotating case of Fig. S4.

4.4 µm).
We recorded data by imaging the interference patterns pro-

duced by setting the linear polariser angles θ (and with them
the half-wave plate angles θ/2) between θ = 0° and θ = 330°
in steps of 30°, which produces a rigid rotation on the interfer-
ence pattern as shown in Fig. S2. To complete the polarization
tomography, we Fourier transform the N = 12 measured im-
ages fθ j (x, y), over θ j = 2π j/N with j = 0,1, . . . ,N − 1, to
f̃`(x, y) =

∑N−1
j=0 ei`θ j fθ j (x, y); we show a representative ex-

ample in Fig. S3. Generally, there is some residual signal on
most components, but only the dominant channel at ` = 3
carries a nonzero phase winding. We collect all the observed
nontrivial phase vortices in Fig. S5.

A similar analysis carried out with co-rotating polarizations
on both arms (achieved by setting QWP2 to +45°), shown in
Fig. S4, exhibits a shift in the dominant Fourier component
from ` = 3 to ` = 1, with a nonzero phase winding on the
latter, corresponding to the observation of a phase singularity
in the dipole field moment T1,3.

Data and code availability
The data from the experiment, together with the scripts for
generating the experimental figures and the code used for
producing the theoretical figures, has been publicly archived
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Figure S6 | Reconstruction of Lissajous-figure fields. Reconstruc-
tion of the trefoil Lissajous figures from the experimental data at
m = −2 shown in Fig. 3d, via the least-squares minimization pro-
cedure described in Methods, and assuming unit conversion effi-
ciency χ on NLC2. The figures exhibit some distortion, probably
due to interferometric drift over the data collection, which also in-
duces some amount of cross-talk between the reconstructed E1
and E2 fields (for which evaluating the uncertainty requires further
analysis); despite this distortion, the γ = −2/3 rotation coordina-
tion parameter of the trefoil lobes over an azimuthal traversal is
clearly visible. The figures are coloured according to their three-
fold orientation angle, α3 =

1
3 arg(T3,3) (mod 120°), with T3,3 taken

from the Fourier-transformed experimental data, as shown in the
inset.

in Ref. 56, at the Zenodo repository doi:10.5281/zenodo.
2649391.
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