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The topological response of matter to electromagnetic fields is a property in high demand in materials design and
metrology due to its robustness against noise and decoherence, stimulating recent advances in ultrafast photonics.
Embedding topological properties into the enantiosensitive optical response of chiral molecules could therefore en-
hance the efficiency and robustness of chiral optical discrimination. Here we achieve such a topological embedding
by introducing the concept of chiral topological light – a light beam which displays chirality locally, with an azimuthal
distribution of its handedness described globally by a topological charge. The topological charge is mapped onto
the azimuthal intensity modulation of the non-linear optical response, where enantiosensitivity is encoded into its
spatial rotation. The spatial rotation is robust against intensity fluctuations and imperfect local polarization states
of the driving field. Our theoretical results show that chiral topological light enables detection of percentage-level
enantiomeric excesses in randomly oriented mixtures of chiral molecules, opening a way to new, extremely sensitive
and robust chiro-optical spectroscopies with attosecond time resolution.
Accepted Author Manuscript. Published online in Nature Photonics (2024) (in press), arXiv:2303.10932. Available under CC BY.

T he topological properties of the electronic response
to electromagnetic fields in solid state systems, as
well as in photonic structures, are being actively har-

vested to obtain robust observables, such as e.g. edge currents
protected from material imperfections in topological insula-
tors [1] or topologically protected light propagation pathways
in their photonic analogs [2, 3]. A similar robustness in the
enantiosensitive optical response of gases or liquids of chi-
ral molecules is strongly desired for analytical purposes, but
is currently missing. While the first ideas connecting topo-
logical and chiral properties of electronic responses [4] or
microwave signals in molecular gases [5, 6] are starting to
emerge, they do not map onto the optical response, which en-
codes the ultrafast chiral electronic dynamics [7].

Topologically non-trivial optical signals can be achieved
by using vortex beams, which carry orbital angular momen-
tum (OAM). They are characterized by an integer topologi-
cal charge representing the number of helical revolutions of
light’s wavefront in space within one wavelength [8]. Re-
cent work established the chirality of vortex light in the lin-
ear regime [9, 10], exploited and manipulated ultrafast non-
linear optical responses to vortex beams in atoms [11, 12],
including the discovery of new synthetic topologies [13], as
well as in chiral molecules [14, 15], where vortex light has
also been successfully used for chiral detection in the hard X-
ray region [16, 17]. However, its natural enantiosensitivity in
the optical domain is weak: the spatial scale of optical vortex
beams is many orders of magnitude larger than the size of a
molecule, making it difficult for the molecule to sense global
field structures.

This limitation can be overcome by encoding chirality of

the optical field in time rather than in space. This means that
locally, at a fixed point in space, the electric field vector of the
electromagnetic wave draws a chiral three-dimensional Lis-
sajous figure during one laser cycle. Fields with such chi-
ral Lissajous figures, referred to as "synthetic chiral light"
[18], employ only electric-dipole transitions to drive non-
linear enantiosensitive signals. They have been devised [19],
applied in the microwave region [20], and extended to the op-
tical domain [18]. The handedness of this light can be con-
trolled with the phase delay between its frequency compo-
nents, both locally –at every point in space – and globally in
the interaction region [21].

Here we introduce the concept of chiral topological light,
which takes advantage of the global topological structure of
vortex light and the high enantiosensitivity of synthetic chiral
light [18], embedding robust topological properties into the
highly enantiosensitive ultrafast optical response.

Our key idea is to imprint the topological properties of
the vortex beam on the synthetic chiral light. Locally, the
handedness of this light is characterized by the chiral corre-
lation function ℎ [18]. Thus, we aim to imprint the topolog-
ical charge of the vortex beam on the azimuthal phase of ℎ:
arg[ℎ(𝜃)] = 𝐶𝜃 + 𝜙𝐿 . Here 𝜃 is azimuthal angle, 𝐶 is the
topological charge, and 𝜙𝐿 is the local enantiosensitive phase
of the complex-valued correlation function ℎ.

We now show that the intensity of the nonlinear optical
emission of a chiral molecular medium triggered by such light
depends on both chiral and topological phases of ℎ as well as
the enantiosensitive phase 𝜙𝑀 introduced by the molecular
medium: 𝐼 (𝜃) ∝ cos(𝜙𝑀 − 𝜙𝐿 + 𝐶𝜃). We find that the az-
imuthal intensity profile is patterned in a topologically robust
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Figure 1 | The concept of chiral vortex light for bicircular counter-rotating 𝜎𝜔 = −𝜎2𝜔 = 1 beams carrying OAMs ℓ𝜔 = −ℓ2𝜔 = 1.
a) Tight focusing of bicircular counter-rotating Gaussian beams induces a longitudinal field, resulting in a synthetic chiral field whose
polarization vector draws a chiral Lissajous curve over one laser cycle (inset). b) Evolution of the chiral Lissajous curves with respect
to the azimuthal angle 𝜃 at a given radial position 𝜌 =

√︁
𝑥2 + 𝑦2 at 𝑧 = 0 for a chiral vortex with ℓ𝜔 = −ℓ2𝜔 = 1. c) Slices through the

electric field distribution at 𝑧 = 0. The figures show the total intensity of the electric field |E |2, the absolute value of the chiral correlation
function |ℎ (5) | and its phase distribution arg

[
ℎ (5) ] . The phase distribution of ℎ (5) describes the spatial distribution of the handedness

of light and is characterized by a topological charge 𝐶 = 6. The 𝑥 and 𝑦 coordinates are scaled to the waist 𝑊0 of the beams at the
focus.

and molecule-specific way, leading to a large enantiosensitive
offset Δ𝜃 = 𝜋/𝐶 between the intensity maxima (or minima)
in opposite enantiomers. What’s more, we find that the topo-
logically controlled angular offset is robust with respect to im-
perfections of light polarization and intensity fluctuations, and
persists for very small amounts of enantiomeric excess. Thus,
it can be used to probe chirality in dilute mixtures.

To demonstrate these ideas, we focus on a specific real-
ization of chiral topological light. It involves two Laguerre-
Gaussian beams with counter-rotating circular polarizations,
propagating along the 𝑧-axis with frequencies 𝜔 and 2𝜔 and
OAMs ℓ𝜔 and ℓ2𝜔 (see Methods). Near the focus the field de-
velops a longitudinal component given by 𝐸𝑧 = −(i/𝑘)∇⊥ ·E⊥
in the first post-paraxial approximation [22] (see Fig. 1a), tak-
ing the light polarization vector out of the (𝑥, 𝑦) plane – a
prerequisite for creating synthetic chiral light.

As a result, the Lissajous figure drawn by the polarization
vector in one point in space over a laser cycle becomes chi-
ral (see inset in Fig. 1a). Its handedness is controlled by the
two-color phase 𝜙2𝜔,𝜔 = 2𝜙𝜔 − 𝜙2𝜔 , which depends on the
azimuthal coordinate, forming a chiral vortex with the topo-
logical charge (see Methods):

𝐶 = 2ℓ𝜔 − ℓ2𝜔 + 2𝜎𝜔 − 𝜎2𝜔 . (1)

Here 𝜎𝑟𝜔 indicates right (𝜎𝑟𝜔 = 1) or left (𝜎𝑟𝜔 = −1) circu-
lar polarization. The Lissajous curve drawn by the polariza-
tion vector of the electric field over one laser cycle changes
with the azimuthal angle, switching handedness 2|𝐶 | times
as the azimuthal angle cycles over one revolution (Fig. 1b).
Thus, the superposition of two tightly-focused OAM beams
at commensurate frequencies gives rise to a chiral vortex, i.e.
a vortex beam displaying chirality locally at each given point

with an azimuthally varying handedness characterized by an
integer topological charge 𝐶.

Figure 1c visualizes the chiral vortex by displaying the
beam total intensity |E(𝑥, 𝑦) |2, the absolute value |ℎ (5) (𝑥, 𝑦) |
and the phase arg[ℎ (5) (𝑥, 𝑦)] of the chiral correlation function
for OAM (ℓ𝜔 , ℓ2𝜔) = (1,−1) and SAM (𝜎𝜔 , 𝜎2𝜔) = (1,−1).
Both the chirality and the total intensity maximize along rings
(see Fig. 1c), typical for vortex beams, while the topological
charge 𝐶 = 6 characterizes the azimuthal phase distribution
of the light’s handedness quantified by the chiral correlation
function.

The chiral topological charge 𝐶 is highly tunable thanks
to its dependence on the OAM of the two beams, which can
take any integer value from −∞ to ∞, enabling chiral vortices
with arbitrarily high (and also arbitrarily low) chiral topolog-
ical charge. By controlling the OAM of the beams, we can
thus create chiral vortex beams with controlled properties. If
𝐶 = 0, then the chiral vortex has the same local handedness
everywhere in space. Otherwise, the field’s handedness dis-
plays a non-trivial spatial structure which is characterized by
𝐶.

We have modeled the highly nonlinear response of ran-
domly oriented chiral molecules to this realization of chiral
topological light depicted in Fig. 1 using a DFT-based S-
matrix approach (see Methods). Figure 2a,b shows the near-
field intensity of harmonic 18 generated in R- and L-fenchone
for fundamental frequency𝜔 = 0.044 a.u. (1033 nm), peak in-
tensity 𝐼0 = 5 · 1014 W/cm2 and a beam waist of 𝑊0 = 2.5 𝜇m
at the jet position 𝑧 = 0.

The azimuthal distribution of the near-field intensity
records both the topology of the driving laser field and
the handedness of the medium. This azimuthal distribu-
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Figure 2 | Enantiosensitive high-harmonic spectroscopy using chiral topological light with topological charge 𝐶 = 6. a,b) The near-field
spatial profile of H18 for L-fenchone (a) and R-fenchone (b). The 𝑥 and 𝑦 axes are given in units of the field waist at the focus 𝑊0.
c,d) The corresponding far-field spatial profiles for the two enantiomers are shown in c for L-Fenchone and d for R-Fenchone. Here
𝑘𝑥 and 𝑘𝑦 are given in units of the reciprocal waist of the field at the focus, 1/𝑊0. All profiles are normalized to their maximum value,
which is the same for opposite enantiomers. The angles in the far-field picture indicate the position of the first peak in the outer ring
of the profile, where we set the zero angle along the positive 𝑘𝑥 direction. For 𝐶 = 6 we have that 𝜙𝐿 = 𝜙𝑅 + 𝜋/3. e-h) Multiphoton
diagrams describing the generation of 3𝑁 high-harmonic orders in a chiral molecule driven by chiral topological light. Photons carrying
SAM 𝜎 = ±1 are indicated with co- or counter-clockwise arrows, whereas longitudinally polarized photons are simple arrows. The ℓ𝑟𝜔
term corresponds to the OAM carried by each photon. e,f) The achiral channels (odd number of photons), where e corresponds to a
final SAM of 𝜎 = 1 and f to 𝜎 = −1. g,h) The chiral channels (even number of photons), for a final SAM of 𝜎 = 1 (g) or 𝜎 = −1 (h).
e-g A final SAM of the 3𝑁 order of 𝜎 = 1 (e,g) or 𝜎 = −1 (f,h).

tion results from the interference between chiral and achi-
ral multiphoton pathways. The maxima occur at angles
𝜃 = [2𝜋𝑛 + (𝜙𝐿 − 𝜙𝑀 )] /𝐶, where the two pathways interfere
constructively. The angular position of the peaks is therefore
enantiosensitive: swapping the molecular enantiomer leads
to a 𝜋 shift in the molecular phase 𝜙𝑀 → 𝜙𝑀 + 𝜋, shift-
ing the minima and maxima of the intensity pattern by 𝜋/𝐶.
The number of peaks is controlled by the topological charge
|𝐶 | = 6. Importantly, the same topological structure is pre-
served in the far-field response, see Fig. 2c,d. In the multipho-
ton picture of HHG, the enantiosensitive topological structure
arises due to the interference between achiral and chiral chan-
nels [18], which we depict in Fig. 2 e,f,g,h. Taking into ac-
count both the SAM 𝜎 and OAM ℓ carried by each photon, it
is easy to see that the difference in net OAM transferred to the
harmonic orders in chiral and achiral channels corresponds to
the topological charge 𝐶 (see Methods for a detailed descrip-
tion).

Encoding the topological charge 𝐶 into the molecular re-
sponse and extracting the enantiosensitive offset angle, con-
trolled by 𝐶, allows us to measure the enantiomeric excess
𝑒𝑒 = (𝑁𝑅 − 𝑁𝐿)/(𝑁𝑅 + 𝑁𝐿) in macroscopic mixtures of left-
and right-handed molecules with concentrations 𝑁𝐿 and 𝑁𝑅.
Even for very small values of 𝑒𝑒, we observe the appearance of
the 𝐶-fold structure in the inner and outer rings, as well as the
corresponding enantiosensitive rotation of the spatial profile,
see Figs. 3a,c. For 𝑒𝑒 = 0% shown in Fig. 3b chiral channels
are suppressed, and a topologically different 2𝐶-fold structure
is observed as a result of the interference between the two
strongest open achiral channels leading to H18 and allowed
by the selection rules, depicted in Fig.2 e,f. (see Methods and
Supplementary Information, SI, for details).

The enantiosensitive rotation of the 𝐶-fold structure in
the outer ring is apparent in the angle-resolved, radially-
integrated signal (Fig. 3d). It manifests in the abrupt switch-
ing of the azimuthal angle which maximizes the signal, as
one changes the enantiomeric excess from positive to neg-

ative. The enantiosensitive rotation can be easily separated
by performing a Fourier analysis of the signal with respect
to the azimuthal angle as a function of the enantiomeric ex-
cess. The solid black line in Fig. 3d shows the phase of the
Fourier component 𝑓6 oscillating at the 𝐶 = 6 frequency of
the outer ring signal, as a function of the enantiomeric excess.
A clear 𝜋 phase jump is observed at 𝑒𝑒 = 0%, indicating
the switch in the handedness of the mixture. The sharpness
of this jump (Fig. 3e) characterizes the accuracy of resolving
left- and right-handed molecules in mixtures with vanishingly
small enantiomeric excess.

We now show that the enantiosensitive signal is robust with
respect to imperfections in the laser beams. First, we include
noise in our simulations (see Methods) via 2% intensity fluc-
tuations of the driving fields. The red line in Figs. 3d,e shows
the phase of the Fourier component 𝑓6 when intensity fluctua-
tions are included. It is clear that the sharp 𝜋 shift of the phase
is robust against noise, see Fig. 3e. It allows us to distinguish
positive and negative enantiomeric excess with high fidelity,
on the scale ∼ 0.1%, demonstrating topological robustness
of the enantio-sensitive signal. The topological structure is
imprinted via azimuthal interference of chiral and achiral re-
sponses and survives as long as the two-color phase remains
stable, which is routinely achieved in two-color experiments
with extremely high accuracy (see e.g. [23]). We thus expect
robust encoding of topological information in the molecular
gas and robust read-out of the chiral topological signal.

Fig.3 is the first key result of our work: our method is sensi-
tive to very small values of enantiomeric excess in nearly equal
mixtures of left- and right-handed molecules. This sensitivity,
at the level well below 1%, rivals or even exceeds the golden
standard achieved in photo-electron spectroscopy [24, 25] us-
ing the new generation of chiral-sensitive methods relying on
the electric dipole interactions [26–30].

Typical experimental imperfections are related to the im-
perfect circularity (SAM) and imperfect OAM contents of the
light beams. We show below that even though such imperfec-
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Figure 3 | Dependence on the enantiomeric excess. a-c) The far-field spatial profiles of H18 for an enantiomeric excess 𝑒𝑒 = (𝑁𝑅 −
𝑁𝐿 )/(𝑁𝑅+𝑁𝐿 ) of -4% (a), 0% (b) and 4% (c), where a positive e.e. corresponds to a larger concentration of R-fenchone in the sample.
d) Angle-resolved, radially-integrated far-field signal of the outer ring of the spatial profile ( |𝑘𝑊0 | > 10) as a function of e.e. The black
line on the right shows the phase of the Fourier component of the spatial profile oscillating at frequency ℓ = 6 as a function of e.e.
The overlapping red line shows the result accounting for intensity fluctuations. The 𝜋 jump at 𝑒𝑒 = 0% indicates the enantiosensitive
rotation of the spatial profile. e) The phase of the Fourier component is shown with black solid line. The red line with circles shows the
phase obtained including intensity fluctuations for e.e. between -5% and 5%.

tions affect the topological charge, the concept of enantiosen-
sitive rotation of the non-linear response remains valid.

Consider chiral topological light created by elliptically po-
larized drivers with imperfect circularity (see SI for imperfec-
tions in the OAM content). To understand its effect on our
observables, we express the elliptical field in terms of two
counter-rotating circularly polarized components: E(𝜔) =

[(1+𝜖)E+ (𝜔) + (1−𝜖) exp(i𝛿)E− (𝜔)]/
√︁

2(1 + 𝜖2). Here 𝛿 is
the phase delay between the components, which corresponds
to the orientation of the resulting elliptical polarization and
can be well controlled in the experiment [24], and |𝜖 | ≤ 1
is the ellipticity, which is difficult to control with few-percent
accuracy. Note that 𝛿 = 0, 𝜋 correspond to elliptical light
“squeezed” along the 𝑥- and 𝑦-axis respectively (see Fig. 4a),
and that both 𝛿 and 𝜖 can be related to standard Stokes param-
eters [31].

The appearance of the additional counter-rotating compo-
nent in the elliptical beam leads to two interrelated conse-
quences: (i) the change of the topological structure of the
harmonic emission due to the presence of new SAM compo-
nents in the beams (see Eq. 1) leading to admixture of emis-
sion with topological charge C=-2, and (ii) the appearance of
two strong multiphoton pathways contributing to the achiral
harmonic signal and effectively masking a weaker chiral sig-
nal driven by the longitudinal polarization. The new achiral
multiphoton channels arising due to imperfect circularity of
the pulse are shown in Fig. 4b,c (see Methods for additional
details). The contribution of different topological charges and
different multiphoton pathways are disentangled by realizing
an analogue of the lock-in method: we use the dependence of
the signal on 𝛿, i.e. on the orientation angle of the polariza-
tion ellipse. This dependence is different for the different non-

linear optical diagrams carrying different topological charges.
Hence, rotating the polarization ellipse, i.e. changing 𝛿, and
Fourier transforming the signal with respect to 𝛿 allows us to
decouple the different contributions to the signal according to
their topological charges and consequently amplify the chiral
signal.

The additional benefit of using elliptical drivers is the ac-
cess to globally chiral light with non-zero topological charge
leading to total, integrated over the spatial profile, enantio-
sensitive intensity in all harmonic orders, providing the op-
portunity to harvest not only the relatively weak 3𝑁 harmon-
ics, but also the naturally intense 3𝑁 + 1 harmonics. Fig-
ures 4d,e,f,g show the total far-field intensity for H18 ( 4d,e)
and H19 ( 4f,g) as a function of the phase delay 𝛿 between the
counter-rotating components of the 𝜔 field for both R- (𝑆𝑅,
blue dotted line) and L-fenchone (𝑆𝐿 , red dotted line), as well
as the chiral dichroism 2(𝑆𝑅 − 𝑆𝐿)/(𝑆𝑅 + 𝑆𝐿) (black dotted
line), for globally chiral topological light with fundamental
beam ellipticity of 𝜖𝜔 = 0.9. The other parameters are kept
as above. The strength of the far-field signal changes as one
rotates the ellipse of the 𝜔 field, while the chiral dichroism in
the signal intensity is maximized at around 20% for harmonic
19 and around 30% for harmonic 18.

Fourier-transforming the far-field intensity profile with re-
spect to the phase delay 𝛿 separates the contributions of dif-
ferent pathways, because they experience different modula-
tion with 𝛿. The two achiral pathways interfere in the third
Fourier component (𝛿 = 3, see Figs. 4b,c) with respect to
𝛿, while the dominant contribution between the chiral and
achiral pathways corresponds to the first Fourier component
(𝛿 = 1). Figure 5a shows the far-field spatial profiles for 𝛿 = 1
for both enantiomers and both H18 and H19, as well as the
their difference, while the polar plots in Fig. 5b,c,d,e show the
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Figure 4 | Fourier analysis to recover the enantiosensitive rotation
of the spatial profile in the case of elliptical fields. a) Ellipse of an
elliptical field and its orientation in the (𝑥, 𝑦) plane with respect to
the phase delay 𝛿 between the counter-rotating components. b,c)
Multiphoton diagrams of the new achiral channels contributing to
the 3𝑁 harmonic orders for chiral topological light with elliptical
𝜔 field, where b corresponds to a final phase delay dependence
of 2𝛿 and c to a final phase delay dependence of −𝛿. The co-
and counter-clockwise arrows indicate the SAM 𝜎, whereas ℓ𝜔
corresponds to the OAM; 𝛿 is the phase delay. d-g) Spatially-
integrated far-field signal for H18 (d,e) and H19 (f,g) as a function
of the phase delay 𝛿. The red (blue) dotted lines in d and f cor-
responds to the signal 𝑆𝐿 (𝑆𝑅) from L-(R-)fenchone, whereas the
black dotted lines in e and g correspond to the chiral dichroism
signal 2(𝑆𝑅 − 𝑆𝐿 )/(𝑆𝑅 + 𝑆𝐿 ). Int., intensity.

radially-integrated signals and chiral dichroism. We see that
the Fourier filtering recovers the enantiosensitive rotation, al-
though the dominant topological charge is now 𝐶 = 2, (Eq. 1
for 𝜎𝜔 = 𝜎2𝜔 = −1).

Fig. 5 is the second key result of our work. It demonstrates
a robust route to decomposing the contributions to the over-
all chiral optical signal, originating from interfering pathways
encoding different topological charge. The decomposition re-
lies on straightforward Fourier analysis of the far field image.
Given the ability to precisely control the orientation of the po-
larization ellipse of the incident infrared light, chiral topolog-
ical light generated by such infrared drivers stands out as a ro-
bust probe of molecular chirality, capable of inducing strongly
enantiosensitive total intensity signals as well as giant rota-
tions of intense spectral features.

The concept of chiral topological light introduced here is
not limited to vortex beams: other members of the larger
family of structured light beams [32–34] can be used to cre-
ate locally and globally chiral topological light. We envi-
sion using tightly focused radially polarized beams, which are
known to posses strong longitudinal components [35], central
to the concept of local chirality. Skyrmionic beams [36, 37]
could also be used, e.g. to induce topological distributions
with radially-dependent topological charges. From the per-
spective of structured light [32–34, 38] the temporally chiral
vortex introduced here represents a new kind of polarization
singularity, which could be analyzed by extending the cur-
rent framework from the monochromatic three dimensional
fields [39, 40] to the polychromatic 3D fields [13, 41, 42].

Our method is not limited to high harmonics. Its exten-

sion to low-order parametric processes such as chiral sum-
frequency generation [43] has potential for non-destructive
enantiosensitive imaging in the UV region and for exploiting
intrinsically low-order nonlinearities for enantiosensitive de-
tection in the X-ray domain [16, 17].

Methods
Spatial structure of vortex beams creating chiral topo-
logical light

We use two Laguerre-Gaussian beams with counter-rotating
circular polarizations, propagating along the 𝑧-axis with fre-
quencies 𝜔 and 2𝜔 and OAMs ℓ𝜔 and ℓ2𝜔 . We set the radial
indices to 𝑝𝜔 = 𝑝2𝜔 = 0. The generalization to the case of
non-zero radial index is straightforward. At the focal plane of
the beams 𝑧 = 0, the Cartesian components of the fields in the
transversal plane (𝑥, 𝑦) are

E⊥
±,𝑟 𝜔 = E𝑟𝜔𝑒

− 𝜌2

𝑊2
0

(√
2𝜌
𝑊0

) |ℓ𝑟𝜔 |

𝑒iℓ𝑟𝜔 𝜃𝑒i𝜙𝑟𝜔

×
(e𝑥 − i𝜎𝑟𝜔e𝑦)√

2
, (2)

where E𝑟𝜔 is the field strength, 𝑊0 is the beam waist, 𝜙𝑟𝜔
is the carrier-envelope phase (CEP), 𝜌 =

√︁
𝑥2 + 𝑦2 and 𝜃 =

arctan(𝑦/𝑥) are the radial and azimuthal coordinates, and 𝜎𝑟𝜔

indicates right (𝜎𝑟𝜔 = 1) or left (𝜎𝑟𝜔 = −1) circular polar-
ization. Near the focus this field develops a longitudinal com-
ponent along the 𝑧-axis given by 𝐸𝑧 = −(i/𝑘)∇⊥ · E⊥ in the
first post-paraxial approximation [22]:

E𝑧
±,𝑟 𝜔 = − iE𝑟𝜔√

2𝑘𝑟𝜔
𝑒
− 𝜌2

𝑊2
0

(√
2

𝑊0

) |ℓ𝑟𝜔 |

𝜌 |ℓ𝑟𝜔 |−1 (3)

× 𝑒i(𝑙𝑟𝜔+𝜎𝑟𝜔 ) 𝜃

(
|ℓ𝑟𝜔 | − 𝜎𝑟𝜔ℓ𝑟𝜔 − 2𝜌2

𝑊2
0

)
e𝑧 .

The total bichromatic electric field E(𝑥, 𝑦) = E±,𝜔 + E±,2𝜔 ,
combining the longitudinal and transverse field components
for each color E±,𝑟 𝜔 = E⊥

±,𝑟 𝜔+E𝑧
±,𝑟 𝜔 (𝑟 = 1, 2), is an example

of a synthetic chiral light [18].

Chiral correlation function

We report here the analytical expression for the chiral cor-
relation function [18] ℎ (5) (−2𝜔,−𝜔, 𝜔, 𝜔, 𝜔) = E∗ (2𝜔) ·
[E∗ (𝜔) × E(𝜔)] (E(𝜔) · E(𝜔)) for the general case of two
OAM-carrying beams with frequencies 𝜔 and 2𝜔, SAMs 𝜎𝜔

and 𝜎2𝜔 and OAMs ℓ𝜔 and ℓ2𝜔 .

ℎ (5) (𝜌,𝜃) = −E2𝜔E4
𝜔√

22𝑘2
𝜔

𝑒
−5 𝜌2

𝑊2
0

(√
2

𝑊0

)4 |ℓ𝜔 |+|ℓ2𝜔 |

𝜌4 |ℓ𝜔 |+|ℓ2𝜔 |−3

(
|ℓ𝜔 | − 𝜎𝜔ℓ𝜔 − 2𝜌2

𝑊2
0

)2


|ℓ𝜔 | − 𝜎𝜔ℓ𝜔 − 2 𝜌2

𝑊2
0

2𝑘𝜔
[
𝑒𝑖𝜎𝜔 𝜃 (𝜎𝜔 − 𝜎2𝜔)−

𝑒−𝑖𝜎𝜔 𝜃 (𝜎𝜔 + 𝜎2𝜔)
]
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Figure 5 | a) Far-field spatial profiles for H18 and H19 obtained after Fourier transform with respect to the phase delay 𝛿 at the 𝛿 = 1
Fourier component for H18 (top ) and H19 (bottom). The left (center) column shows the results for L-(R-)fenchone, whereas the right
column shows the difference signal 𝑆𝑅 − 𝑆𝐿 . b-e) Radially-integrated signal as a function of the azimuthal angle of the far-field spatial
profiles for H18 (b,c) and H19 (d,e). The solid red (blue) lines in b d correspond to L-(R-)fenchone, whereas the black lines in c and e
show the chiral dichroism signal 2(𝑆𝑅 − 𝑆𝐿 )/(𝑆𝑅 + 𝑆𝐿 ).

+𝜎2𝜔
𝑘2𝜔

( |ℓ2𝜔 | − 𝜎2𝜔ℓ2𝜔 − 2𝜌2

𝑊2
0
)𝑒−𝑖𝜎2𝜔 𝜃

}
𝑒𝑖 (2𝜙𝜔−𝜙2𝜔 )𝑒𝑖 (2ℓ𝜔+2𝜎𝜔−ℓ2𝜔 ) 𝜃 (4)

It is easy to verify that both in the counter-rotating𝜎𝜔 = −𝜎2𝜔
and co-rotating case 𝜎𝜔 = 𝜎2𝜔 the azimuthal dependence
of the chiral correlation function is given by 𝐶𝜃, where 𝐶 =

2(ℓ𝜔 + 𝜎𝜔) − (ℓ2𝜔 + 𝜎2𝜔).

DFT-based SFA simulations in fenchone

The method is adapted from Refs. [18, 44, 45] to describe
HHG in a chiral molecule subjected to a strong field. The
macroscopic dipole moment in an ensemble of randomly ori-
ented molecules arises form the coherent summation of the
contributions from all possible molecular orientations

D(𝑁𝜔) =
∫

𝑑Ω

∫
𝑑𝛽DΩ𝛽 (𝑁𝜔),

where 𝜔 is the fundamental frequency, 𝑁 is the harmonic
number and DΩ𝛽 is the harmonic dipole associated with a
molecular orientation characterized by the three Euler angles,
here denoted in terms of the solid angle Ω and the angle 𝛽. In
the strong-field approximation (SFA), the harmonic dipole for
a given orientation [18, 45] is given by

DΩ𝛽 (𝑁𝜔) = 𝑒i𝑁𝜔𝑡 ′𝑟 𝑎rec d(UΩ𝛽Re[k(𝑡′𝑟 )])𝑎prop

𝑒−i𝑆 (p𝑠 ,𝑡𝑖 ,𝑡𝑟 ) 𝑎ion Ψ𝐷 (UΩ𝛽Re[k(𝑡′𝑖 )]), (5)

where d(k) is the recombination matrix element in the lab-
oratory frame and k(𝑡) = p + A(𝑡). Here UΩ𝛽 is the rota-
tion matrix that transforms the laboratory frame (e1, e2, e3) to
the molecular (i1, i2, i3) frame, with elements U𝑖 𝑗 = ⟨e𝑖 |i 𝑗⟩
for a given orientation.Here Ψ𝐷 (k) = ⟨k|Ψ𝐷⟩ is the overlap
between the Volkov state with kinetic momentum k and the
Dyson orbital, where the latter is the overlap between the neu-
tral 𝑁-electron wavefunction and the ionic (𝑁 − 1)-electron
wavefunction |Ψ𝐷⟩ = ⟨Ψ𝑁−1 |Ψ𝑁 ⟩. The integral over the

solid angle 𝑑Ω = 𝑑𝛼𝑑𝛽 sin(𝛽) is performed using the Lebe-
dev quadrature method [46], while the integral over the 𝛽 an-
gle is done by trapezoid method. In order to find the rotation
matrix, we first assume that the 𝑥-axis of the molecular frame
points toward a given Lebedev point, and then rotate by an
angle 𝛽 around the 𝑥-axis. For all simulations we use a 17th-
order Lebedev quadrature (for a total of 110 points) and 40 𝛽

angles evenly distributed on the [0, 2𝜋] interval.
In the expression for the harmonic dipole, p, 𝑡𝑖 = 𝑡′

𝑖
+

i𝑡′′
𝑖

, 𝑡𝑟 = 𝑡′𝑟 + i𝑡′′𝑟 are the complex momenta and times
of ionization and recombination resulting from the appli-
cation of the saddle-point method [45]. 𝑆(p, 𝑡𝑖 , 𝑡𝑟 ) =
1
2

∫ 𝑡𝑟

𝑡𝑖
𝑑𝑡′ [p + A(𝑡′)]2+𝐼𝑝 (𝑡𝑟−𝑡𝑖) is the action from the (com-

plex) times of ionization and recombination. The terms asso-
ciated with the saddle-point method on (𝑡𝑖 , 𝑡𝑟 , p) are given by

𝑎(p, 𝑡𝑖 , 𝑡𝑟 ) = 𝑎ion𝑎prop𝑎rec

𝑎ion =

√︄
2𝜋
𝜕2
𝑡𝑖
𝑆

𝑎rec =

√︄
2𝜋
𝜕2
𝑡𝑟
𝑆

𝑎prop =

(
2𝜋

i(𝑡𝑟 − 𝑡𝑖)

)3/2

where the second derivatives of the action are given explicitly
by

𝜕2
𝑡𝑖
𝑆 = −E(𝑡𝑖) · k(𝑡𝑖),

𝜕2
𝑡𝑖
𝑆 = E(𝑡𝑟 ) · k(𝑡𝑟 ),

where E(𝑡) is the electric field and all expressions for the pref-
actor are calculated at the complex times.

The transition matrix elements of the right- and left-handed
molecules are related by

D𝑅 (k) = −D𝐿 (−k), (6)

while for the overlap between the Dyson orbital and the Volkov
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wavefunction we have that

Ψ𝑅
𝐷 (k) = Ψ𝐿

𝐷 (−k). (7)

The matrix elements and the Dyson orbitals for fenchone are
calculated using DFT methods described in [47, 48].

Multiphoton picture

The multiphoton picture of enantiosensitive HHG driven by
chiral topological light can be understood by analyzing the
contributing chiral and achiral multiphoton pathways. To do
so, we classify the multiphoton pathways by indicating with a
subscript the SAM of the photon, so that e.g. (𝑁)𝜔+ indicate
the absorption of 𝑁 𝜔 photons with SAM 𝑚 = 1 and (−1)𝜔𝑧

indicates the emission of one 𝜔 photon with SAM 𝑚 = 0.
In the specific case of bicircular counter-rotating fields, if

the field has no longitudinal component along its direction of
propagation (i.e. if we consider an achiral field in the dipole
approximation), conservation of SAM results in a harmonic
spectrum with doublets at 3𝑁 + 1 and 3𝑁 + 2 harmonic fre-
quencies, where the 3𝑁 +1 harmonics (3𝑁 +2) co-rotate with
the𝜔 (2𝜔) field [23, 49]. 3𝑁 harmonic orders are forbidden in
achiral media, since their generation requires absorption of an
equal number of photons from both drivers. In chiral media,
the 3𝑁 harmonic orders can instead be generated due to the
broken parity of the medium, but are polarized along the di-
rection of propagation of the fields (the 𝑧-axis in our case), and
thus are not detectable in the far-field. We label this pathway
as

𝐶𝑧 = [(𝑁)𝜔+, (𝑁)2𝜔−] . (8)

Focusing on the specific case of 3𝑁 harmonic orders, if the
field is chiral (i.e. if it posses a longitudinal component along
the propagation direction) in the case of achiral media the
following multiphoton pathways can now lead to symmetry-
allowed HHG:

AC+ = [(𝑁 − 2) · 𝜔+, (2)𝜔𝑧 , (𝑁 − 1) · 2𝜔−] (9)
AC− = [(𝑁 − 1) · 𝜔+, (−1)𝜔𝑧 , (𝑁) · 2𝜔− , (1)2𝜔𝑧] (10)

corresponding respectively to the emission of a photon with
SAM 𝑚 = 1 and 𝑚 = −1. We label these pathways as achiral
pathways (i.e. AC𝑚, with𝑚 the SAM of the harmonic photon),
since they occur already in achiral media driven by a chiral
field as they require the absorption and emission of an odd
number of photons. If the medium is chiral, two new pathways
including absorption of an equal number of 𝜔 and 2𝜔 photons
open, i.e.

C+ = [(𝑁) · 𝜔+, (𝑁 − 1) · 2𝜔− , (1)2𝜔𝑧] (11)
C− = [(𝑁 − 1) · 𝜔+, (1)𝜔𝑧 , (𝑁) · 2𝜔−] (12)

corresponding again respectively to the emission of a photon
with SAM𝑚 = 1 and𝑚 = −1. We label these pathways as chi-
ral pathways (C𝑚) since they can occur only in chiral media.
Finding the corresponding OAM of all pathways indicated
above is straightforward, once we remember that the longitu-
dinal components of the fields carry OAMs of ℓ𝜔𝑧

= ℓ𝜔+ +𝜎𝜔

and ℓ2𝜔𝑧
= ℓ2𝜔− + 𝜎2𝜔 . Obviously, other chiral and achi-

ral pathways including the absorption of a larger number of

𝑧-polarized photons from either drivers are also in principle
accessible: yet, since the longitudinal component is relatively
weak, we restrict ourselves here to the photon pathways that
include the absorption or emission of the fewest number of 𝑧-
polarized photons. Fig. 1a of the SI) shows schematically the
multiphoton pathways C𝑧 , AC𝑚 and C𝑚 for the case of a 3𝑁
harmonic order.

The results from the SFA simulations confirm the consid-
erations above; in Fig. 1b of the SI we show the near-field
OAM distributions for H18 in R-fenchone driven by a field
with ℓ𝜔 = −ℓ2𝜔 = 1 and 𝜎𝜔 = −𝜎2𝜔 = 1. For comparison,
we also report the OAM content for an artificial atom with
ionization potential equal to fenchone driven by the same chi-
ral field and the OAM content in fenchone for an achiral field
with same OAM of the driving beams, obtained by manually
setting the longitudinal component of the field to zero.
When the field is achiral, H18 in an atom is absent, while
in the case of fenchone we observe a ℓ = 0 component po-
larized along the 𝑧-axis: this corresponds to the pathway C𝑧

denoted above. When the field is chiral, circularly polarized
components with ℓ = ±5 are observed for both the atom and
the molecule: these are the achiral pathways AC+ and AC−
denoted above. Finally, the chiral pathways C+ and C− cor-
respond to the OAMs ℓ = ±1 and are only seen in a chiral
molecule, since they require the absorption of an even num-
ber of photons. Note that in the far-field only the SAM𝑚 = ±1
components are going to be observed, since 𝑚 = 0 polariza-
tion (corresponding to the C𝑧 pathway in black in Fig. 1b of
the SI) will propagate in a direction orthogonal with respect
to the propagation axis of the beams.

The different OAM content of an atom and chiral molecule
driven by a chiral bicircular field is directly reflect in the far-
field profile of H18, shown in Fig. 1c of the SI). In an atom
(left figure of Fig. 1c of the SI), where for a given SAM there
is only one contributing OAM, the far-field profile of H18 is a
ring where the intensity is mostly constant, while in fenchone
we observe an azimuthal interference pattern with periodic-
ity determined by the topological charge 𝐶, corresponding in
modulus to the net difference between the OAMs of chiral and
achiral pathways. The enantiosensitive rotation of the spatial
profile can be understood from the perspective of the multi-
photon pathways by accounting a shift by 𝜋 of the phase of
the chiral pathways C± when changing the molecular enan-
tiomer. The enantiosensitive rotation of the spatial profile of
the high harmonics in the far-field allows one also to use HHG
driven by chiral vortices as a highly-sensitive method to infer
the enantiomeric excess in a mixture of right- and left-handed
molecular enantiomers.

Next order pathways can be identified using the same ap-
proach. In the case of achiral channels the next order pathway
includes the absorption of two more longitudinal photons (see
Fig. 2 of the SI) and is respectively two order of magnitude
smaller. The next order chiral pathway is four order of mag-
nitude smaller, corresponding to the absorption of four more
longitudinal photons, and so on.

As mentioned in the main text in the case of an elliptically
polarized 𝜔 field two new achiral pathways dominate the re-
sponse, whose photon diagrams we report in Fig. 3 of the
SI. For a 3𝑁 harmonic order both new achiral pathways con-
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tribute to the final SAM of 𝑚 = −1 and are in particular

AC𝜖
1 = [(𝑁 − 2) · 𝜔+, (2)𝜔− , (𝑁 − 1) · 2𝜔−] (13)

AC𝜖
2 = [(𝑁 − 1) · 𝜔+, (−1)𝜔− , (𝑁 + 1) · 2𝜔−] , (14)

where 𝜔− refers now to the counter-rotating component of the
elliptically polarized field at 𝜔 frequency. Since each ellipti-
cally polarized photon carries a phase delay dependence of
exp(i𝛿), the interference between these two achiral pathways
oscillates with respect to the phase delay as 3𝛿. This explains
why choosing the 𝛿 = 1 component of the harmonic profile af-
ter Fourier analysis allows one to recover the enantiosensitive
rotation of the spatial profile.

Noise (intensity fluctuations) simulations

In order to include the effect of noise on HHG driven by chi-
ral vortex light, we take the following approach. For a given
electric field strength 𝐸0 (which we assume to be the same for
both fields) the Laguerre-Gaussian beam is given in the near-
field by E(r) = 𝐸0LG𝑙, 𝑝 (r), where LG𝑙, 𝑝 = 𝐿𝐺𝑙, 𝑝 (r)e𝐿 (r).
Here 𝐿𝐺𝑙, 𝑝 is a Laguerre-Gaussian mode and e𝐿 is the polar-
ization vector of the field. The corresponding laser intensity
is 𝐼0 = |𝐸0 |2. We then pick a value for the laser intensity from
a normal distribution of noise centered at 𝐼0 with width 𝛾. We
call this electric field intensity 𝐼1. Then, for each point r in the
focus, we introduce intensity fluctuations such that at a given
position the electric field strength is given by

I(r) = 𝐼1 𝐿𝐺𝑙, 𝑝 (r) (1 + 𝛿𝐼 (r)), (15)

where 𝛿𝐼 (r) = 𝐶𝜆(r). 𝜆(r) is chosen from a Gaussian distri-
bution centered at zero with width 1 and𝐶 = 0.1 is a constant.
There is therefore 68.2% probability that the fluctuation is be-
low 0.1% of the signal at the given point. We produce 16 elec-
tric fields using this approach, choosing a central intensity of
𝐼0 = 5·1014 W/cm2 with width 𝛾 = 3.51·1013 W/cm2, and cal-
culate the resulting far-field picture for left- and right-handed
fenchone. The average intensity fluctuations are on the or-
der of 2%, on par with standard experimental parameters [50].
We then scan the enantiomeric excesses 𝑒𝑒 between −100%
and 100% in 1001 steps. For each step, we pick a random in-
dex 𝑖 between 1 and 16, selecting one of the far-field profiles
for R- and L-fenchone d𝑅/𝐿

𝑖
. The resulting far-field image at

a given enantiomeric excess 𝑒𝑒 = (𝑁𝑅 − 𝑁𝐿)/(𝑁𝑅 + 𝑁𝐿)
for normalized concentrations 𝑁𝑅 + 𝑁𝐿 = 1 is given by
d𝑒𝑒 = 𝑁𝑅d𝑅

𝑖
+ 𝑁𝐿d𝐿

𝑖
and the phase of the ℓ = 6 Fourier

component of the outer ring 𝑘𝑊0 > 10 is then calculated. We
then repeat the procedure 16 times and for each enantiomeric
excess calculate the mean phase as 𝜙 =

∑16
𝑖=1 𝜙𝑖/16. The result

is the red solid line shown in Fig. 3e.
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